From Regressions to Transformers

CSE545 - Spring 2023 Stony Brook University

H. Andrew Schwartz

Big Data Analytics, The Class

Goal: Generalizations A model or summarization of the data.

Data Workflow Frameworks

Hadoop File System Spark

Streaming MapReduce Deep Learning Frameworks

Analytics and Algorithms

Similarity Search Hypothesis Testing

Regressions->Transformers

Recommendation Systems

Link Analysis

Big Data Analytics, The Class

Goal: Generalizations A model or summarization of the data.

Data Workflow Frameworks

Analytics and Algorithms

Hadoop File System Spark Streaming

MapReduce Deep Learning Frameworks

Similarity Search

Hypothesis Testing

Regressions->Transformers

Recommendation Systems

Link Analysis

Deep Learning

Already Covered:

- Pytorch as a dataflow system of with a graph of tensors, operations, and building blocks
- Implementation of Linear Regression in PyTorch
- Minimizing error (concept of gradient descent)
- Parallelisms: Data Parallelism and Model Parallelism

(see topic (5) Neural Network Workflow Systems)

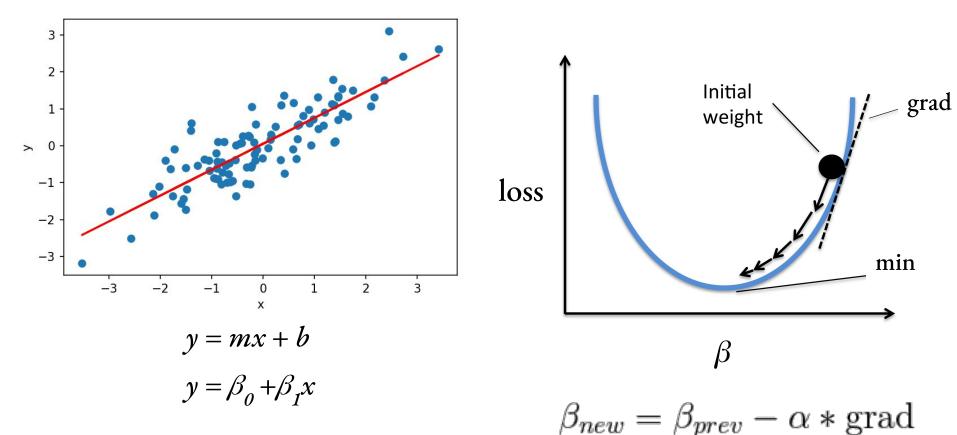
Deep Learning

Already Covered:

- Pytorch as a dataflow system of with a graph of tensors, operations, and building blocks
- Implementation of Linear Regression in PyTorch
- Minimizing error (concept of gradient descent)
- Parallelisms: Data Parallelism and Model Parallelism

(see topic (5) Neural Network Workflow Systems)

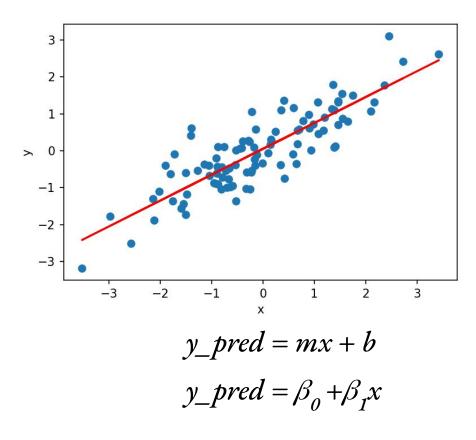
Linear Regression and Gradient Descent



https://www.desmos.com/calculator/y8j7sejtuw https://www.desmos.com/calculator/2usyk3ykts

(rasbt, http://rasbt.github.io/mlxtend/user_guide/general_concepts/gradient-optimization/)

Linear Regression and Gradient Descent



https://www.desmos.com/calculator/y8j7sejtuw https://www.desmos.com/calculator/2usyk3ykts

$$loss = \Sigma (y_pred - y)^2$$

 $\beta_{new} = \beta_{prev} - \alpha * \text{grad}$

(rasbt, http://rasbt.github.io/mlxtend/user_guide/general_concepts/gradient-optimization/)

Regressions

- Linear Regression
- Pearson Product-Moment Correlation
- Multiple Linear Regression
- (Multiple) Logistic Regression
- Ridge Regularized Linear/Logistic Regression

Regressions

- Linear Regression
- Pearson Product-Moment Correlation
- Multiple Linear Regression
- (Multiple) Logistic Regression
- Ridge Regularized Linear/Logistic Regression

Finding a linear function based on X to best yield Y.

X = "covariate" = "feature" = "predictor" = "regressor" = "independent variable"

Y = "response variable" = "outcome" = "dependent variable"

Regression:
$$r(x) = E(Y|X = x)$$

goal: estimate function r

The **expected** value of *Y*, given that the random variable *X* is equal to some specific value, *x*. Finding a linear function based on X to best yield Y.

X = "covariate" = "feature" = "predictor" = "regressor" = "independent variable"

Y

Y = "response variable" = "outcome" = "dependent variable"

Regression:
$$r(x) = E(Y|X = x)$$

goal: estimate the function r

Linear Regression (univariate version):

goal: find β_0 , β_1 such that

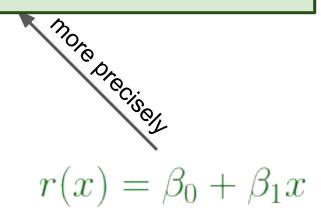
$$r(x) = \beta_0 + \beta_1 x$$

$$r(x) \approx \mathbf{E}(Y|X = x)$$

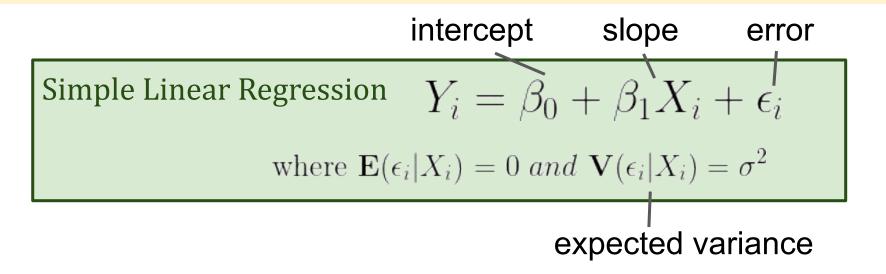
Linear Regression

Simple Linear Regression
$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

where $\mathbf{E}(\epsilon_i | X_i) = 0$ and $\mathbf{V}(\epsilon_i | X_i) = \sigma^2$



Linear Regression



Linear Regression: Estimating Params

Simple Linear Regression
$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

where $\mathbf{E}(\epsilon_i | X_i) = 0$ and $\mathbf{V}(\epsilon_i | X_i) = \sigma^2$

How to estimate intercept (\Box_0) and slope intercept (\Box_1) ?

Least Squares Estimate. Find $\hat{\beta}_0$ and $\hat{\beta}_1$ which minimizes the residual sum of squares: $J(\Box) = RSS = \sum_{i=1}^n \hat{\epsilon}_i^2 = \sum_{i=1}^n (Y_i - \hat{Y}_i)^2 = \sum_{i=1}^n (Y_i - \beta_0 - \beta_1 X_i)^2$

Covariance

$$Cov(X, Y) = \mathbf{E}(XY) - \mathbf{E}(X)\mathbf{E}(Y)$$

= $\mathbf{E}((X - \bar{X})(Y - \bar{Y}))$

Covariance

$$Cov(X,Y) = \mathbf{E}(XY) - \mathbf{E}(X)\mathbf{E}(Y)$$

= $\mathbf{E}((X - \bar{X})(Y - \bar{Y}))$

Correlation

$$r = r_{X,Y} = \frac{Cov(X,Y)}{s_X s_Y}$$

Covariance

$$Cov(X,Y) = \mathbf{E}(XY) - \mathbf{E}(X)\mathbf{E}(Y)$$

= $\mathbf{E}((X - \bar{X})(Y - \bar{Y}))$

Correlation (standardized covariance)

$$r = r_{X,Y} = \frac{Cov(X,Y)}{s_X s_Y}$$
$$= \frac{1}{n-1} \sum_{i=1}^n \left(\frac{X_i - \bar{X}}{s_X}\right) \left(\frac{Y_i - \bar{Y}}{s_Y}\right)$$

Covariance

$$Cov(X,Y) = \mathbf{E}(XY) - \mathbf{E}(X)\mathbf{E}(Y)$$
$$= \mathbf{E}\left((X - \bar{X})(Y - \bar{Y})\right)$$
Correlation

$$r = r_{X,Y} = \frac{Cov(X,Y)}{s_X s_Y}$$
$$= \frac{1}{n-1} \sum_{i=1}^n \left(\frac{X_i - \bar{X}}{s_X}\right) \left(\frac{Y_i - \bar{Y}}{s_Y}\right)$$

Lin Reg Direct Estimates (normal equations)

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (X_{i} - \bar{X})(Y_{i} - \bar{Y})}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}$$
$$\hat{\beta}_{0} = \bar{Y} - \hat{\beta}_{1}\bar{X}$$

Covariance

$$Cov(X, Y) = \mathbf{E}(XY) - \mathbf{E}(X)\mathbf{E}(Y)$$
$$= \mathbf{E}\left((X - \bar{X})(Y - \bar{Y})\right)$$
Correlation

$r = r_{X,Y} = \frac{Cov(X,Y)}{s_X s_Y}$ $= \frac{1}{n-1} \sum_{i=1}^n \left(\frac{X_i - \bar{X}}{s_X} \right) \left(\frac{Y_i - \bar{Y}}{s_Y} \right)$

Lin Reg Direct Estimates (normal equations)

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (X_{i} - \bar{X})(Y_{i} - \bar{Y})}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}$$
$$\hat{\beta}_{0} = \bar{Y} - \hat{\beta}_{1}\bar{X}$$

Covariance

$$Cov(X,Y) = \mathbf{E}(XY) - \mathbf{E}(X)\mathbf{E}(Y)$$
$$= \mathbf{E}\left((X - \bar{X})(Y - \bar{Y})\right)$$

Correlation

$$r = r_{X,Y} = \frac{Cov(X,Y)}{s_X s_Y}$$
$$= \frac{1}{n-1} \sum_{i=1}^n \left(\frac{X_i - \bar{X}}{s_X} \right) \left(\frac{Y_i - \bar{Y}}{s_Y} \right)$$

Lin Reg Direct Estimates (normal equations)

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (X_{i} - \bar{X})(Y_{i} - \bar{Y})}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}$$
$$\hat{\beta}_{0} = \bar{Y} - \hat{\beta}_{1}\bar{X}$$

If one standardizes *X* and *Y* (i.e. subtract the mean and divide by the standard deviation) before running linear regression, then: ??

Covariance

$$Cov(X,Y) = \mathbf{E}(XY) - \mathbf{E}(X)\mathbf{E}(Y)$$
$$= \mathbf{E}\left((X - \bar{X})(Y - \bar{Y})\right)$$

Correlation

$$r = r_{X,Y} = \frac{Cov(X,Y)}{s_X s_Y}$$
$$= \frac{1}{n-1} \sum_{i=1}^n \left(\frac{X_i - \bar{X}}{s_X} \right) \left(\frac{Y_i - \bar{Y}}{s_Y} \right)$$

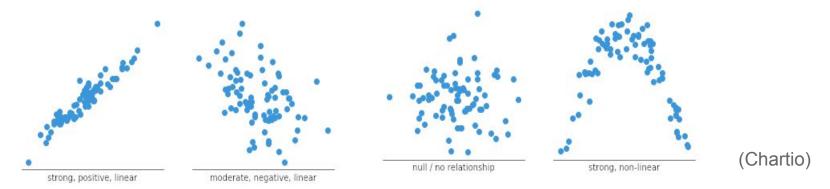
Lin Reg Direct Estimates (normal equations)

$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (X_{i} - \bar{X})(Y_{i} - \bar{Y})}{\sum_{i=1}^{n} (X_{i} - \bar{X})^{2}}$$
$$\hat{\beta}_{0} = \bar{Y} - \hat{\beta}_{1}\bar{X}$$

If one standardizes *X* and *Y* (i.e. subtract the mean and divide by the standard deviation) before running linear regression, then: $\hat{\beta}_0 = 0$ and $\hat{\beta}_1 = r$ --- *i.e.* $\hat{\beta}_1$ *is the Pearson correlation!*

Useful Plots: Correlation

Scatter Plot: for two variables expected to be associated (with optional regression line)

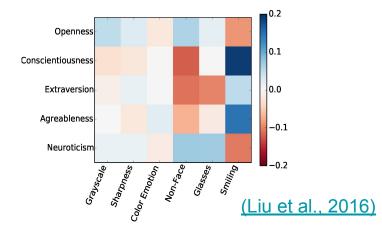


Correlation Matrix: for comparing associations between many variables (use Bonferroni correction if hyp testing)

	FriendSize	Intelligence Quotient	Income	Sat W/ Life	Depression
F1	0.03	0.04	0.12	0.02	-0.1
F2	0.04	-0.26	-0.19	-0.09	0.11
F3	-0.07	-0.13	0.02	-0.02	-0.02
F4	-0.03	0.27	-0.08	-0.12	0.11
F5	-0.01	0.23	0.29	0.07	-0.21

Fig 3. Individual factor correlations with outcomes. Note how F4 which captures the use of swear words negatively correlates with Satisfaction with Life (SWL).

https://doi.org/10.1371/journal.pone.0201703.g003



Regressions

- Linear Regression
- Pearson Product-Moment Correlation
- Multiple Linear Regression
- (Multiple) Logistic Regression
- Ridge Regularized Linear/Logistic Regression

Regressions

- Linear Regression
- Pearson Product-Moment Correlation
- Multiple Linear Regression
- (Multiple) Logistic Regression
- Ridge Regularized Linear/Logistic Regression

Simple Linear Regression
$$Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$$

where $\mathbf{E}(\epsilon_i | X_i) = 0$ and $\mathbf{V}(\epsilon_i | X_i) = \sigma^2$

Estimated intercept and slope

$$\hat{r}(x) = \hat{\beta}_0 + \hat{\beta}_1 x \quad \hat{Y}_i = \hat{r}(X_i)$$
Residual: $\hat{\epsilon}_i = Y_i - \hat{Y}_i$

Suppose we have multiple *X* that we'd like to fit to *Y* at once:

$$Y_{i} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \dots + \beta_{m}X_{m1} + \epsilon_{i}$$

If we include and $X_{oi} = 1$ for all i (i.e. adding the intercept to X), then we can say: $Y_i = \sum_{j=0}^m \beta_j X_{ij} + \epsilon_i$

Suppose we have multiple *X* that we'd like to fit to *Y* at once:

$$Y_{i} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \dots + \beta_{m}X_{m1} + \epsilon_{i}$$

If we include and $X_{oi} = 1$ for all *i*, then we can say:

$$Y_i = \sum_{j=0}^m \beta_j X_{ij} + \epsilon_i$$

Or in vector notation across all i: $Y = X\beta + \epsilon$ where β and ϵ are vectors and X is a matrix.

Suppose we have multiple *X* that we'd like to fit to *Y* at once:

$$Y_{i} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \dots + \beta_{m}X_{m1} + \epsilon_{i}$$

If we include and $X_{oi} = 1$ for all *i*, then we can say:

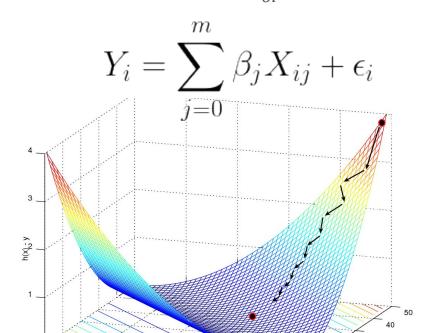
$$Y_i = \sum_{j=0}^m \beta_j X_{ij} + \epsilon_i$$

Or in vector notation across all i: $Y = X\beta + \epsilon$ where β and ϵ are vectors and X is a matrix. Estimating β : $\hat{\beta} = (X^T X)^{-1} X^T Y$

Suppose we have multiple *X* that we'd like to fit to *Y* at once:

$$Y_{i} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \dots + \beta_{m}X_{m1} + \epsilon_{i}$$

If we include and $X_{oi} = 1$ for all *i*, then we can say:



Or in vector notation across all i: $Y = X\beta + \epsilon$ where β and ϵ are vectors and X is a matrix.

Estimating eta :

– Use Gradient Descent

Regressions

- Linear Regression
- Pearson Product-Moment Correlation
- Multiple Linear Regression
- (Multiple) Logistic Regression
- Ridge Regularized Linear/Logistic Regression

Regressions

- Linear Regression
- Pearson Product-Moment Correlation
- Multiple Linear Regression
- (Multiple) Logistic Regression
- Ridge Regularized Linear/Logistic Regression

 $Y_i \in \{0, 1\}$; X is a **single value** and can be anything numeric.

$$P(Y_i = 1 | X_i = x) = \frac{e^{\beta_0 + \beta_1 x_i}}{1 + e^{\beta_0 + \beta_1 x_i}}$$

 $Y_i \in \{0, 1\}$; X is a **single value** and can be anything numeric.

$$P(Y_i = 1 | X_i = x) = \frac{e^{\beta_0 + \beta_1 x_i}}{1 + e^{\beta_0 + \beta_1 x_i}}$$
$$= \frac{1}{1 + e^{-(\beta_0 + \sum_{j=1}^m \beta_j x_{ij})}}$$

 $Y_i \in \{0, 1\}$; X is a **single value** and can be anything numeric.

 $Y_i \in \{0, 1\}; X can be anything numeric.$

$$P(Y_i = 1 | X_i = x) = \frac{e^{\beta_0 + \beta_1 x_i}}{1 + e^{\beta_0 + \beta_1 x_i}}$$

The goal of this function is to: <u>take in the variable x</u> and <u>return a probability that Y is 1</u>.

 $Y_i \in \{0, 1\}$; X can be anything numeric.

$$p_{i} \equiv P(Y_{i} = 1 | X_{i} = x) = \frac{e^{\beta_{0} + \beta_{1} x_{i}}}{1 + e^{\beta_{0} + \beta_{1} x_{i}}}$$

The goal of this function is to: <u>take in the variable x</u> and <u>return a probability that Y is 1</u>.

Note that there are only three variables on the right: X_i , B_0 , B_1

Logistic Regression on a single feature (x)

 $Y_i \in \{0, 1\}$; X can be anything numeric.

$$p_i \equiv P(Y_i = 1 | X_i = x) = \frac{e^{\beta_0 + \beta_1 x_i}}{1 + e^{\beta_0 + \beta_1 x_i}}$$

The goal of this function is to: <u>take in the variable x</u> and <u>return a probability that Y is 1</u>.

Note that there are only three variables on the right: X_i , B_0 , B_1

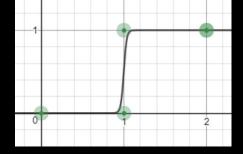
X is given. B_0 and B_1 must be <u>learned</u>.

Logistic Regression on a single feature (x)

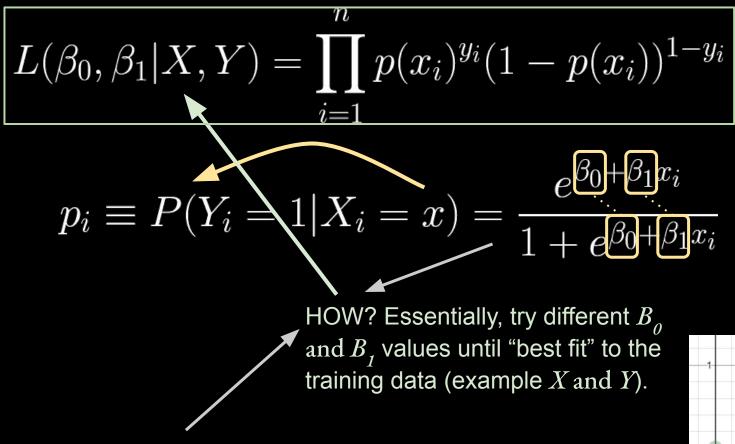
 $Y_i \in \{0, 1\}$; X can be anything numeric.

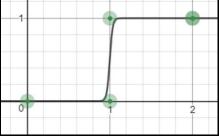
$$p_{i} \equiv P(Y_{i} = 1 | X_{i} = x) = \frac{e^{\beta_{0} + \beta_{1} x_{i}}}{1 + e^{\beta_{0} + \beta_{1} x_{i}}}$$

HOW? Essentially, try different B_o and B_1 values until "best fit" to the training data (example X and Y).



X is given. B_0 and B_1 must be <u>learned</u>.





X is given. B_0 and B_1 must be learned.

$$L(\beta_0, \beta_1 | X, Y) = \prod_{i=1}^n p(x_i)^{y_i} (1 - p(x_i))^{1 - y_i}$$

$$L(\beta_0, \beta_1 | X, Y) = \prod_{i=1}^n p(x_i)^{y_i} (1 - p(x_i))^{1 - y_i}$$

"best fit" : more efficient to maximize *log likelihood* :

$$L(\beta_0, \beta_1 | X, Y) = \prod_{i=1}^n p(x_i)^{y_i} (1 - p(x_i))^{1 - y_i}$$

"best fit" : more efficient to maximize log likelihood :

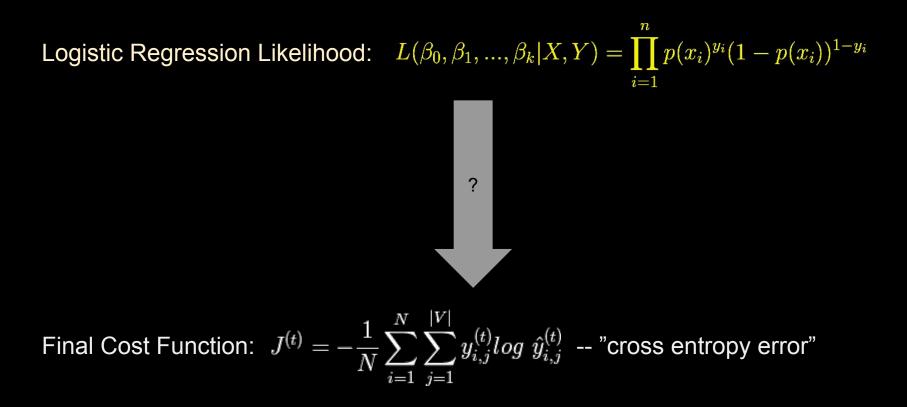
$$\ell(\beta) = \sum_{i=1}^{N} y_i \log p(x_i) + (1 - y_i) \log (1 - p(x_i))$$

$$L(\beta_0, \beta_1 | X, Y) = \prod_{i=1}^n p(x_i)^{y_i} (1 - p(x_i))^{1 - y_i}$$

"best fit" : more efficient to maximize *log likelihood* :

$$\ell(\beta) = \sum_{i=1}^{N} y_i \log p(x_i) + (1 - y_i) \log (1 - p(x_i))$$

"best fit" for neural networks: software designed to **minimize** rather than maximize (typically, normalized by N, the number of examples.)



Logistic Regression Likelihood:
$$L(\beta_0, \beta_1, ..., \beta_k | X, Y) = \prod_{i=1}^n p(x_i)^{y_i} (1 - p(x_i))^{1-y_i}$$

Log Likelihood:
$$\ell(\beta) = \sum_{i=1}^N y_i \log p(x_i) + (1 - y_i) \log (1 - p(x_i))$$

Log Loss:
$$J(\beta) = -\frac{1}{N} \sum_{i=1}^N y_i \log p(x_i) + (1 - y_i) \log (1 - p)(x_i))$$

Final Cost Function:
$$J^{(t)} = -\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{|V|} y_{i,j}^{(t)} \log \hat{y}_{i,j}^{(t)}$$
 -- "cross entropy error"

Logistic Regression Likelihood: $L(\beta_0, \beta_1, ..., \beta_k | X, Y) = \prod p(x_i)^{y_i} (1 - p(x_i))^{1-y_i}$ $\ell(\beta) = \sum_{i=1}^{N} y_i \log p(x_i) + (1 - y_i) \log (1 - p(x_i))$ $J(\beta) = -\frac{1}{N} \sum_{i=1}^{N} y_i \log p(x_i) + (1 - y_i) \log (1 - p)(x_i))$ Log Likelihood: Log Loss: $J = -\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{|V|} y_i log \ p(x_{i,j})$ (a "multiclass" log loss) Cross-Entropy Cost: *V* is classes Final Cost Function: $J = -\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} y_{i,j} \log \hat{y}_{i,j}$ -- "cross entropy error"

Logistic Regression Likelihood: $L(\beta_0, \beta_1, ..., \beta_k | X, Y) = \prod p(x_i)^{y_i} (1 - p(x_i))^{1-y_i}$ $\ell(\beta) = \sum_{i=1}^{N} y_i \log p(x_i) + (1 - y_i) \log (1 - p(x_i))$ $J(\beta) = -\frac{1}{N} \sum_{i=1}^{N} y_i \log p(x_i) + (1 - y_i) \log (1 - p)(x_i))$ Log Likelihood: Log Loss: $J = -rac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{|V|} y_i log \ p(x_{i,j})$ (a "multiclass" log loss) Cross-Entropy Cost: *V* is classes Final Cost Function: $J = -\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{|V|} y_{i,j} \log \hat{y}_{i,j}$ -- "cross entropy error"

loss = torch.mean(-torch.sum(y*torch.log(y_pred))

$$\hat{y}_{i,j} = P(Y_i = 1 | X_i = x) = \frac{e^{\beta_0 + \beta_1 x_i}}{1 + e^{\beta_0 + \beta_1 x_i}} = \frac{1}{\frac{1}{1 + e^{-\beta x}}}$$

Final Cost Function:
$$J = -\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{|V|} y_{i,j} \log \hat{y}_{i,j}$$
 -- "cross entropy error"

Final

loss = torch.mean(-torch.sum(y*torch.log(y_pred))

$$\begin{split} \hat{y}_{i,j}^{[+]} &= P(Y_i = 1 | X_i = x) = \frac{e^{\beta_0 + \beta_1 x_i}}{1 + e^{\beta_0 + \beta_1 x_i}} \\ &= \frac{1}{1 + e^{-\beta x}} \\ J &= -\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{|V|} y_i \log \left(\frac{1}{1 + e^{-\beta x}}\right) \\ \text{Cost Function: } J &= -\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{|V|} y_{i,j} \log \hat{y}_{i,j}^{[+]} - \text{"cross entropy error"} \end{split}$$

loss = torch.mean(-torch.sum(y*torch.log(y_pred))

As a Graph?

$$J = -rac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{|V|} y_i log \ (rac{1}{1+e^{-eta x}})^{-1}$$

loss = torch.mean(-torch.sum(y*torch.log(y_pred))
sgd = torch.optim.SGD(model.parameters(), lr=learning_rate)

Final Cost Function:
$$J = -\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{|V|} y_{i,j} \log \hat{y}_{i,j}$$
 -- "cross entropy error"

loss = torch.mean(-torch.sum(y*torch.log(y_pred))
sgd = torch.optim.SGD(model.parameters(), lr=learning_rate)

To Optimize Betas (all weights/parameters within the neural net):

Stochastic Gradient Descent (SGD)

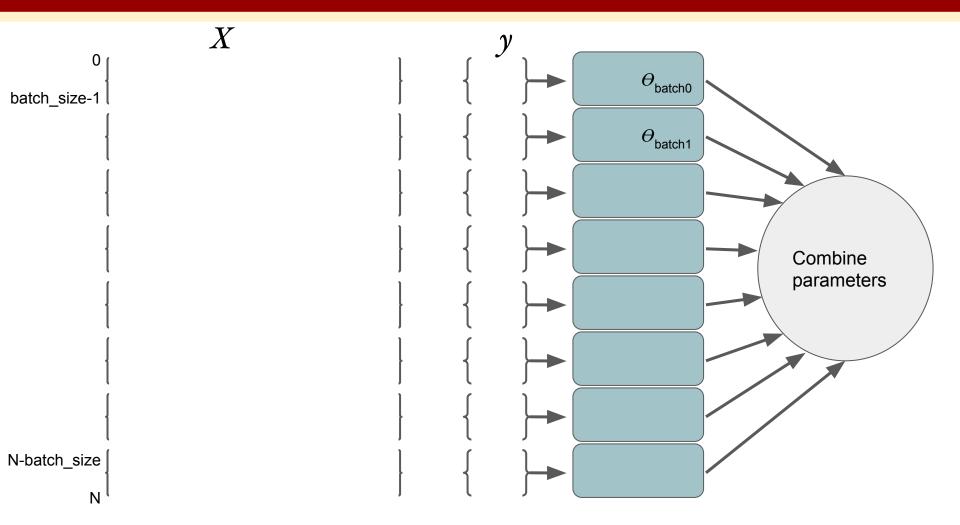
-- optimize over one sample each iteration

Mini-Batch SDG:

--optimize over b samples each iteration

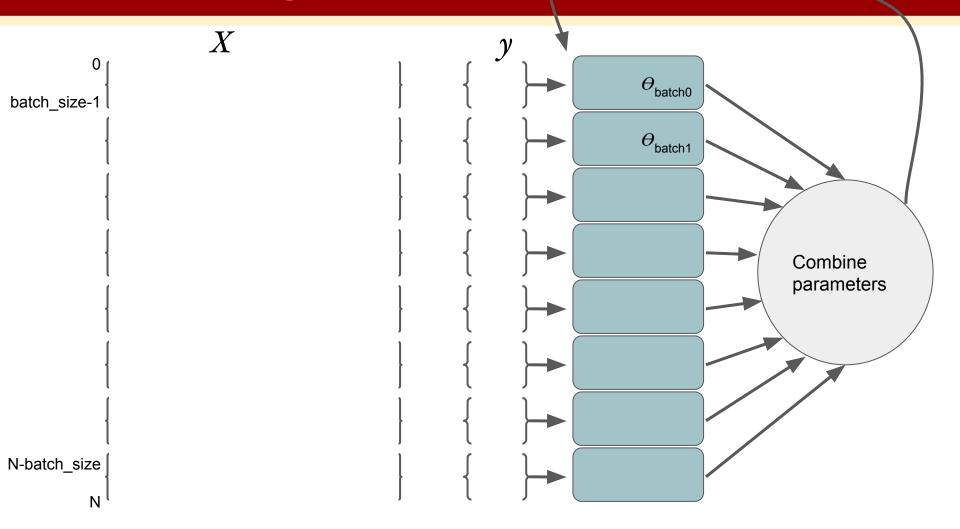
Final Cost Function:
$$J = -\frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{|V|} y_{i,j} \log \hat{y}_{i,j}$$
 -- "cross entropy error"

Distributing Data



Distributing Data

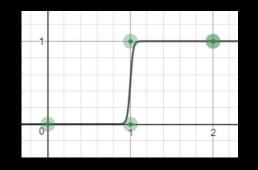
update params of each node and repeat

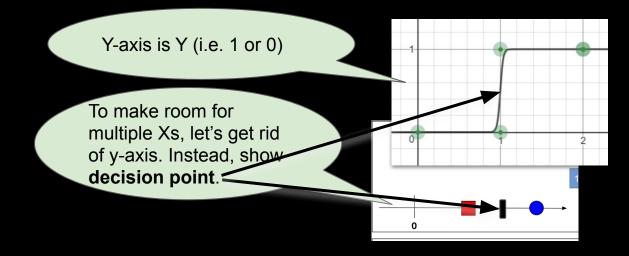


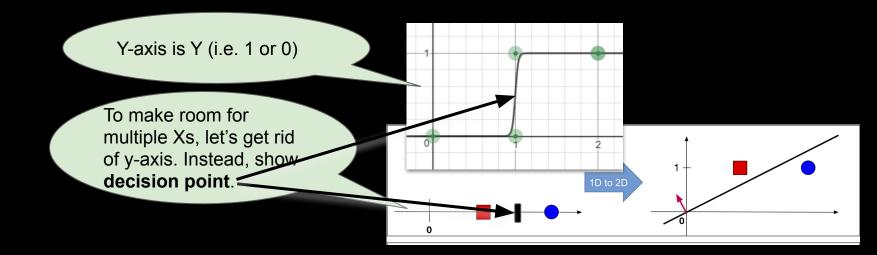
X can be multiple features

Often we want to make a classification based on multiple features:

- Number of capital letters surrounding: integer
- Begins with capital letter: {0, 1}
- Preceded by "the"? {0, 1}

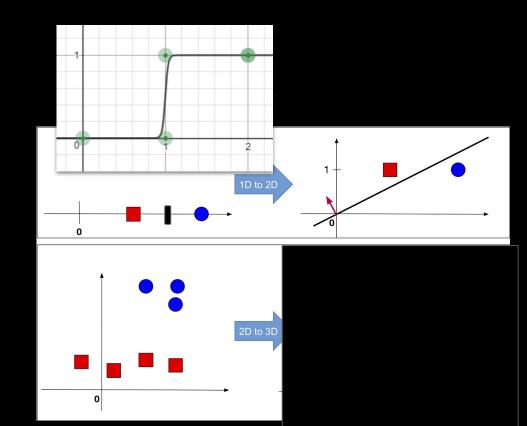




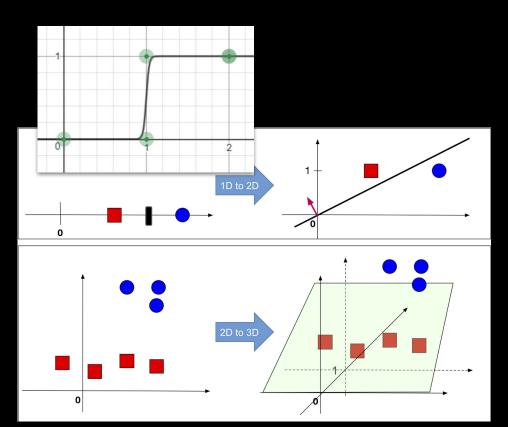


1 feature

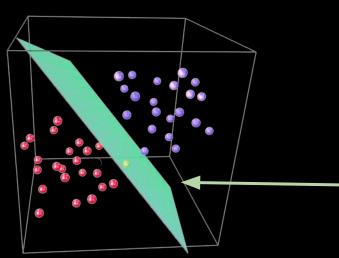
2 features



• Because we're still learning a linear "hyperplane"



X can be multiple features



We're learning a linear (i.e. flat) *separating hyperplane*, but fitting it to a *logit* outcome.

(https://www.linkedin.com/pulse/predicting-outcomes-pr obabilities-logistic-regression-konstantinidis/)

Logistic Regression

What if $Y_i \in \{0, 1\}$? (i.e. we want "classification")

$$p_i \equiv p_i(\beta) \equiv \mathbf{P}(Y_i = 1 | X = x) = \frac{e^{\beta_0 + \sum_{j=1}^m \beta_j x_{ij}}}{1 + e^{\beta_0 + \sum_{j=1}^m \beta_j x_{ij}}}$$

$$logit(p_i) = log\left(\frac{p_i}{1-p_i}\right) = \beta_0 + \sum_{j=1}^{m} \beta_j x_{ij}$$
We're still learning a linear
separating hyperplane, but
fitting it to a logit outcome.

(https://www.linkedin.com/pulse/predicting-outcomes-pr obabilities-logistic-regression-konstantinidis/)

Uses of Regressions

- 1. Testing the relationship between variables given other variables. β is an "effect size" -- a score for the magnitude of the relationship; can be tested for significance.
- 2. Building a predictive model that generalizes to new data. \hat{Y} is an estimate value of Y given X.

Uses of Regressions

- 1. Testing the relationship between variables given other variables. β is an "effect size" -- a score for the magnitude of the relationship; can be tested for significance.
- 2. Building a predictive model that generalizes to new data. \hat{Y} is an estimate value of *Y* given *X*.

Task: Determine a function, f (or parameters to a function) such that f(X) = Y

Uses of Regressions

- 1. Testing the relationship between variables given other variables. β is an "effect size" -- a score for the magnitude of the relationship; can be tested for significance.
- 2. Building a predictive model that generalizes to new data.
 Ŷ is an estimate value of Y given X.
 However, when |*features*| *close to number of observatations* then the model might "overfit".
 - -> Regularized linear regression (a ML technique)

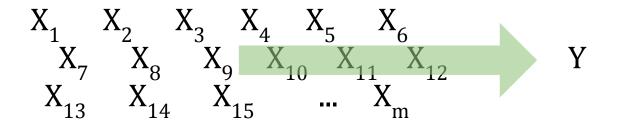
Regressions

- Linear Regression
- Pearson Product-Moment Correlation
- Multiple Linear Regression
- (Multiple) Logistic Regression
- Ridge Regularized Linear/Logistic Regression

Regressions

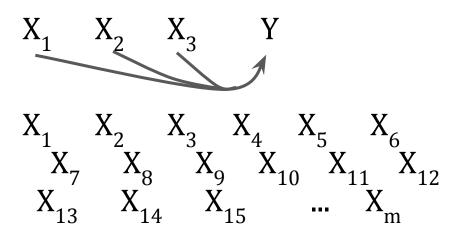
- Linear Regression
- Pearson Product-Moment Correlation
- Multiple Linear Regression
- (Multiple) Logistic Regression
- Ridge Regularized Linear/Logistic Regression

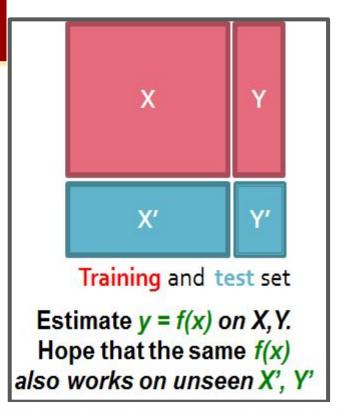
Supervised Statistical Learning



Task: Determine a function, f(or parameters to a function) such that f(X) = Y

Supervised Learning





J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

Task: Determine a function, f (or parameters to a function) such that f(X) = Y

0.5	0	0.6	1	0	0.25	1
0	0.5	0.3	0	0	0	1
0	0	1	1	1	0.5	0
0	0	0	0	1	1	0
0.25	1	1.25	1	0.1	2	1

X

0.5	0	0.6	1	0	0.25	1
0	0.5	0.3	0	0	0	1
0	0	1	1	1	0.5	0
0	0	0	0	1	1	0
0.25	1	1.25	1	0.1	2	1

X

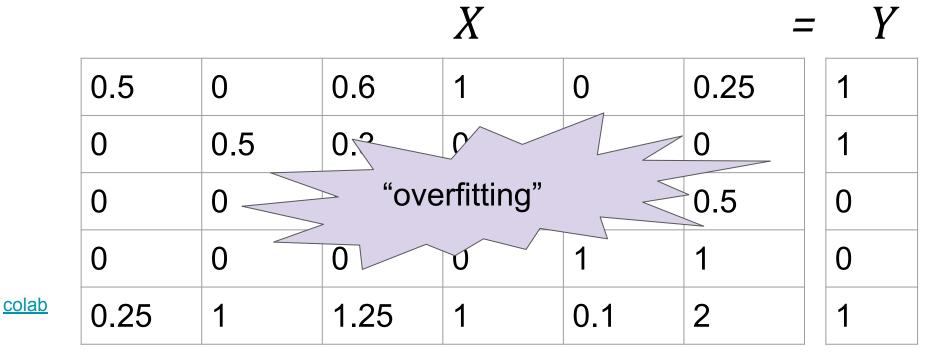
—

X

0.5	0	0.6	1	0	0.25	1
0	0.5	0.3	0	0	0	1
0	0	1	1	1	0.5	0
0	0	0	0	1	1	0
0.25	1	1.25	1	0.1	2	1

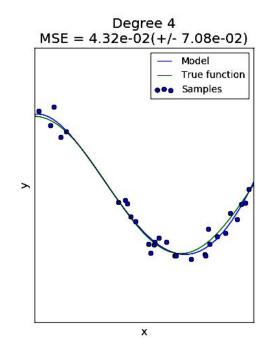
= Y

 $1.2 + -63^{*}x_{1} + 179^{*}x_{2} + 71^{*}x_{3} + 18^{*}x_{4} + -59^{*}x_{5} + 19^{*}x_{6} = logit(Y)$

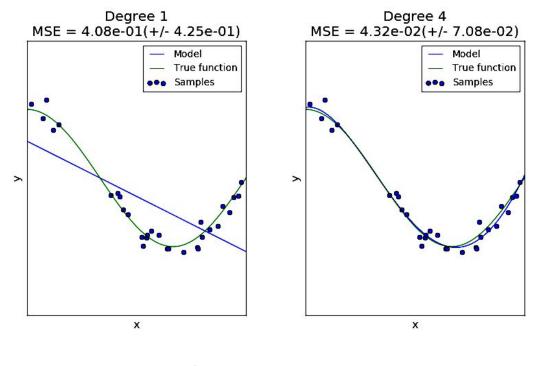


 $1.2 + -63^{*}x_{1} + 179^{*}x_{2} + 71^{*}x_{3} + 18^{*}x_{4} + -59^{*}x_{5} + 19^{*}x_{6} = logit(Y)$

Overfitting (1-d example)



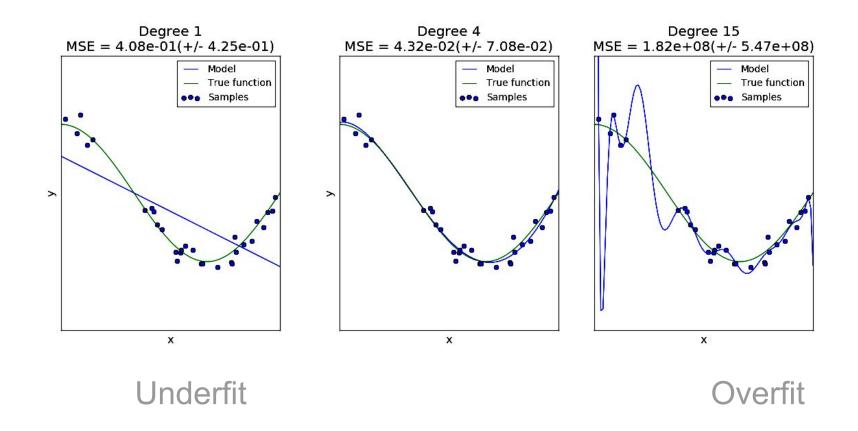
Overfitting (1-d example)



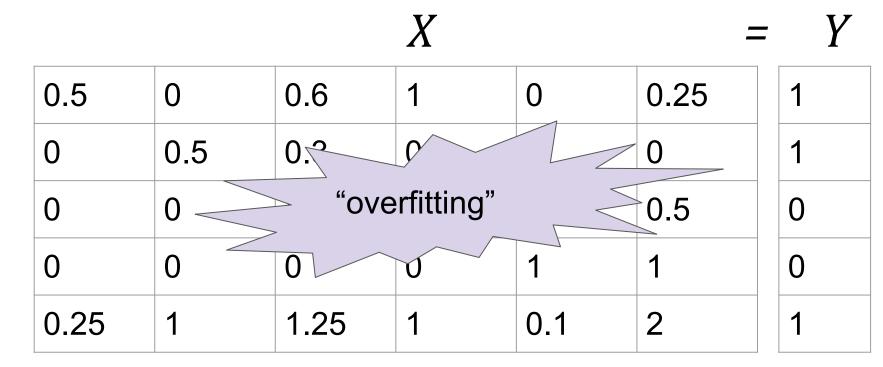
Underfit

(image credit: Scikit-learn; in practice data are rarely this clear)

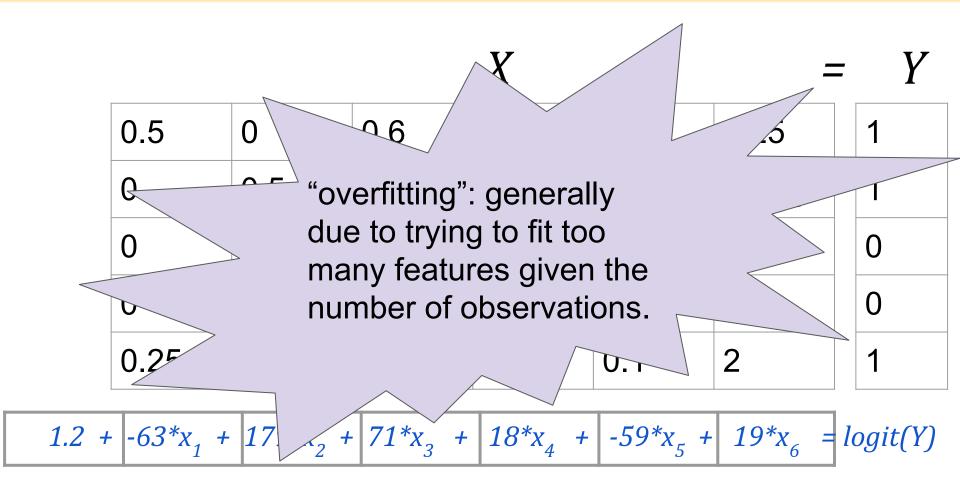
Overfitting (1-d example)

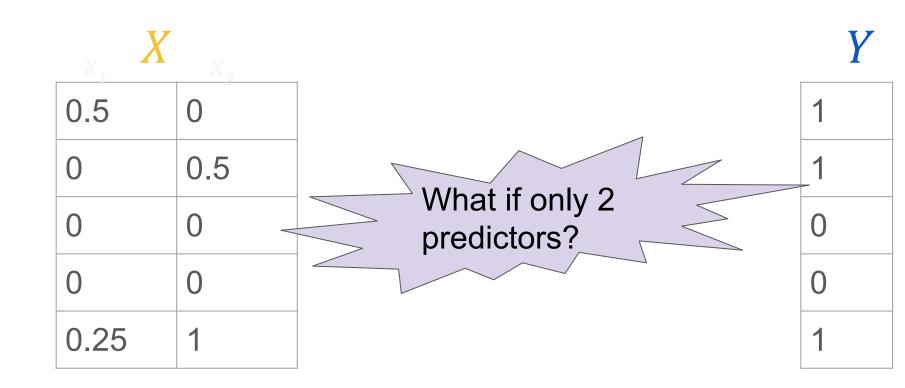


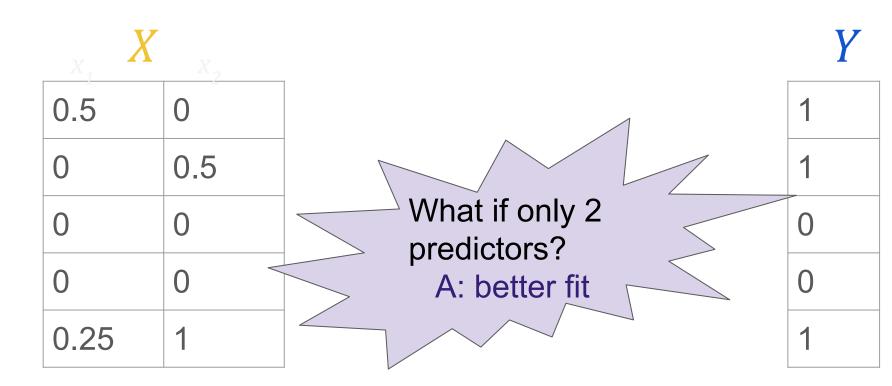
(image credit: Scikit-learn; in practice data are rarely this clear)



 $1.2 + -63^{*}x_{1} + 179^{*}x_{2} + 71^{*}x_{3} + 18^{*}x_{4} + -59^{*}x_{5} + 19^{*}x_{6} = logit(Y)$







 $0 + 2^*x_1 + 2^*x_2$

= logit(Y)

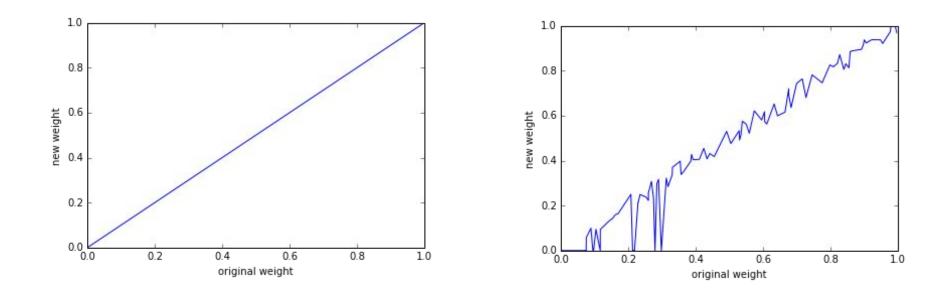
Regularization: stepwise feature selection

(bad) solution to overfit problem

Use less features based on Forward Stepwise Selection:

start with current model just has the intercept (mean) remaining predictors = all predictors for i in range(k): #find best p to add to current model: for p in remaining_prepdictors refit current model with p #add best p, based on $\text{RSS}_{_{\text{D}}}$ to current_model #remove p from remaining predictors

Regularization: shrinkage



No selection (weight=beta)

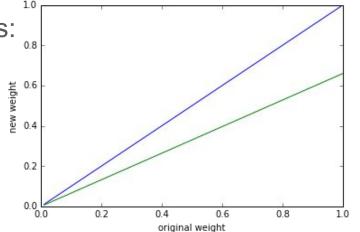
Why just keep or discard features?

forward stepwise

Idea: Impose a penalty on size of weights:

Ordinary least squares objective:

$$\hat{\beta} = \arg\min_{\beta} \{\sum_{i=1}^{N} (y_i - \sum_{j=1}^{m} x_{ij}\beta_j)^2\}$$



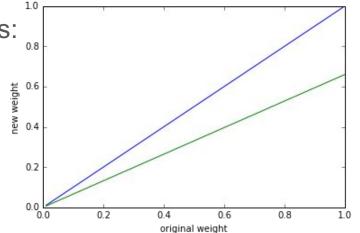
Idea: Impose a penalty on size of weights:

Ordinary least squares objective:

$$\hat{\beta} = argmin_{\beta} \{ \sum_{i=1}^{N} (y_i - \sum_{j=1}^{m} x_{ij}\beta_j)^2 \}$$

Ridge regression:

$$\hat{\beta}^{ridge} = argmin_{\beta} \{\sum_{i=1}^{N} (y_i - \sum_{j=1}^{m} x_{ij}\beta_j)^2 + \lambda \sum_{j=1}^{m} \beta_j^2 \}$$

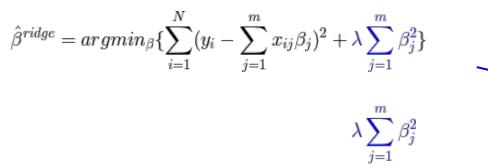


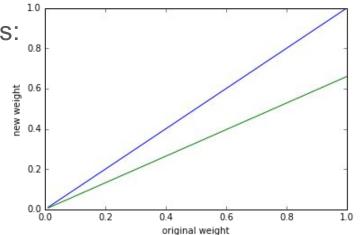
Idea: Impose a penalty on size of weights:

Ordinary least squares objective:

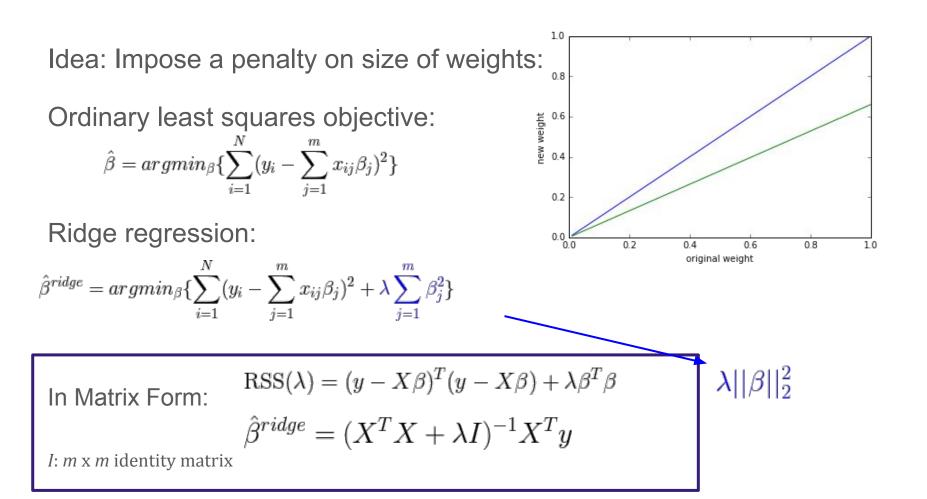
$$\hat{\beta} = argmin_{\beta} \{ \sum_{i=1}^{N} (y_i - \sum_{j=1}^{m} x_{ij}\beta_j)^2 \}$$

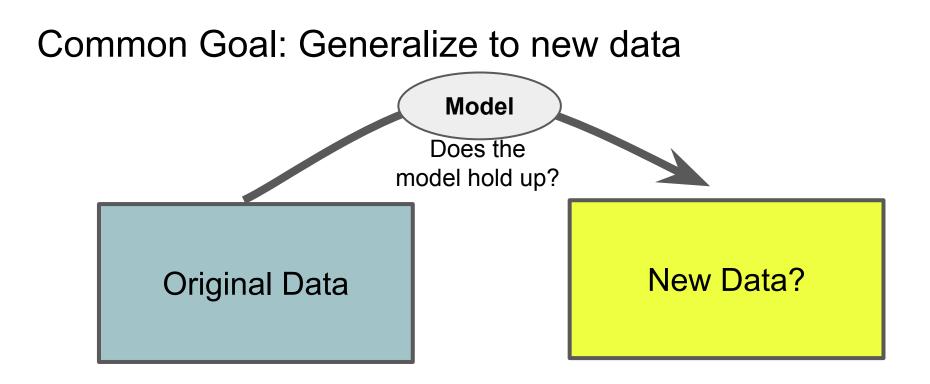
Ridge regression:

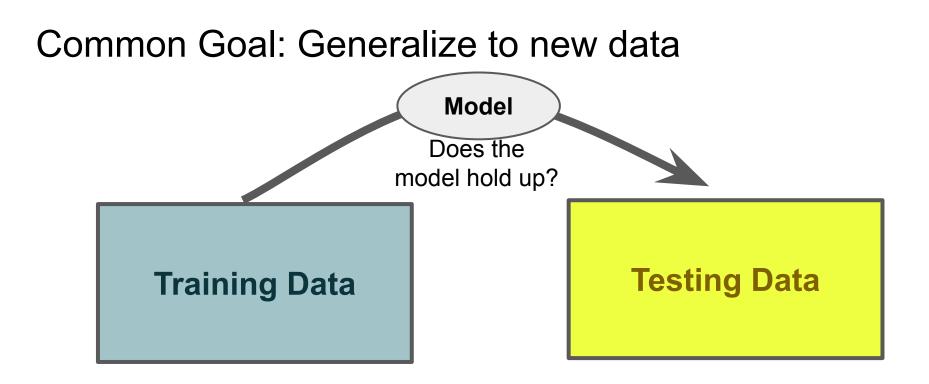




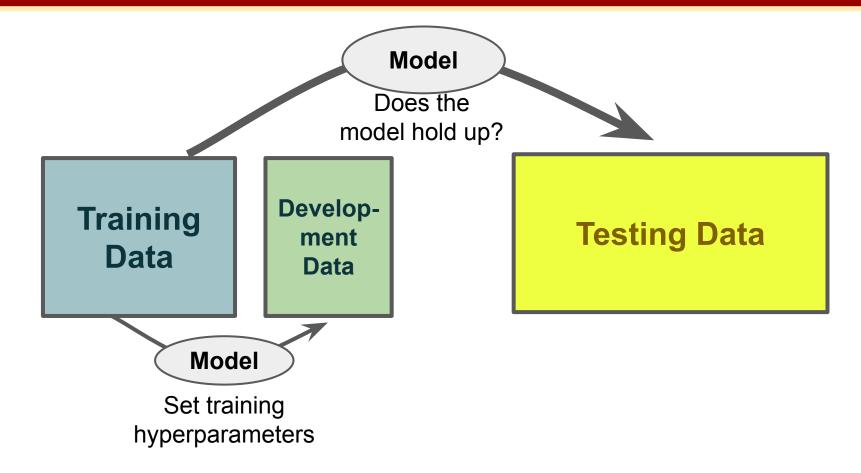
 $\lambda ||\beta||_2^2$





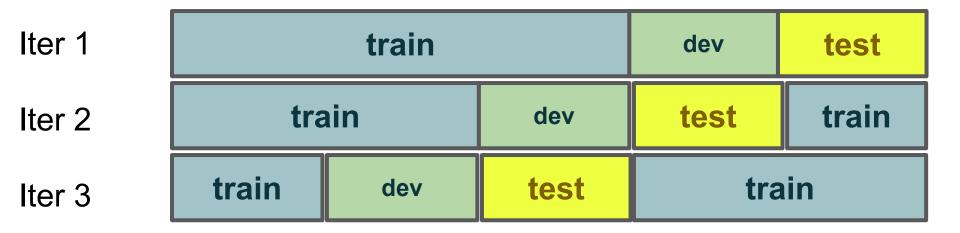


ML: GOAL



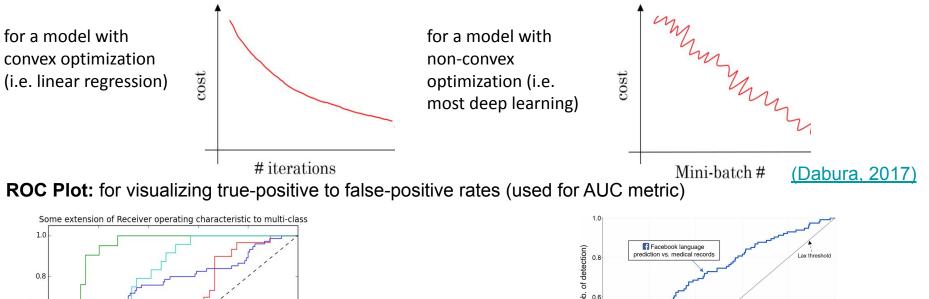
N-Fold Cross Validation

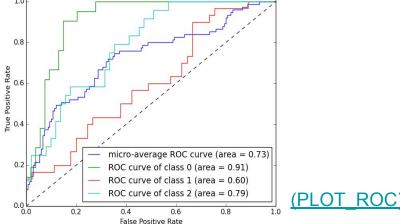
Goal: Decent estimate of model accuracy

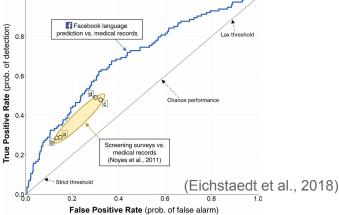


Useful Plots: Prediction

Learning Curve: for plotting error from gradient descent.



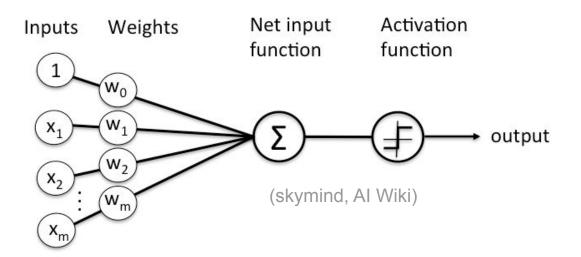




From Linear Models to Neural Nets

Linear Regression: y = wX

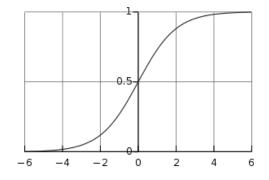
Neural Network Nodes: *output = f(wX)*



Common Activation Functions

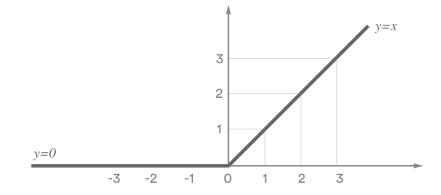
z = wX

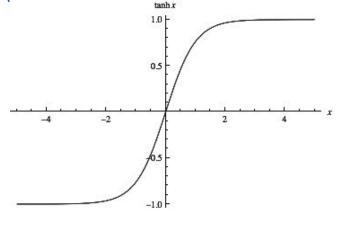
Logistic: $\sigma(z) = 1/(1 + e^{-z})$



Hyperbolic tangent: $tanh(z) = 2\sigma(2z) - 1 = (e^{2z} - 1)/(e^{2z} + 1)$

Rectified linear unit (ReLU): ReLU(z) = max(0, z)

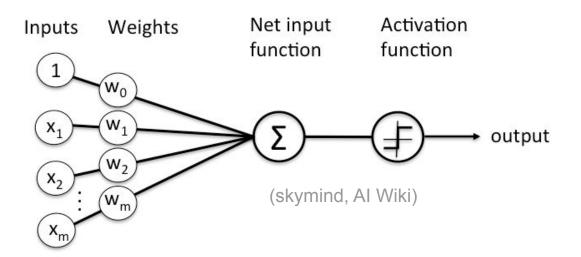




From Linear Models to Neural Nets

Linear Regression: y = wX

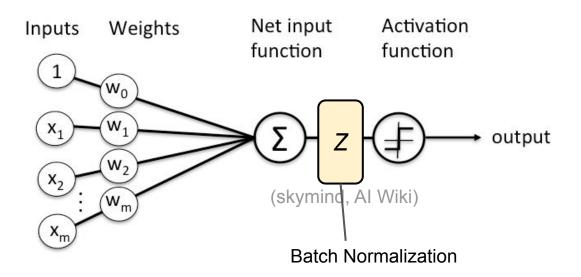
Neural Network Nodes: *output = f(wX)*



From Linear Models to Neural Nets

Linear Regression: y = wX

Neural Network Nodes: output = f(wX)



Batch Normalization

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ, β **Output:** $\{y_i = BN_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$ // mini-batch mean $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$ // mini-batch variance $\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$ // normalize $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathsf{BN}_{\gamma,\beta}(x_i)$ // scale and shift

(loffe and Szegedy, 2015)

Batch Normalization

This is just standardizing! (but within the current batch of observations)

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β **Output:** $\{y_i = BN_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$ // mini-batch mean $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$ // mini-batch variance $\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{D}}^2 + \epsilon}}$ // normalize $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$ // scale and shift

(loffe and Szegedy, 2015)

Batch Normalization

This is just standardizing! (but within the current batch of observations)

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ, β **Output:** $\{y_i = BN_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i$ // mini-batch mean $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$ // mini-batch variance

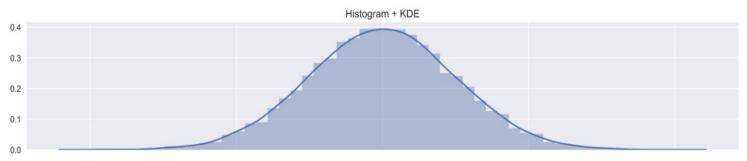
$$\widehat{x}_{i} \leftarrow \frac{x_{i} - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^{2} + \epsilon}}$$
 // normalize
 $y_{i} \leftarrow \gamma \widehat{x}_{i} + \beta \equiv BN_{\gamma,\beta}(x_{i})$ // scale and shift

(loffe and Szegedy, 2015)

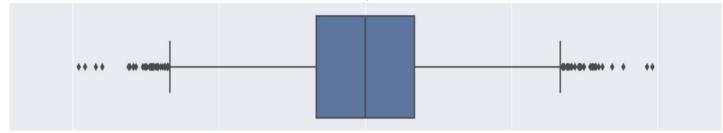
Why?

- Empirically, it works!
- Conceptually, generally good for weight optimization to keep data within a reasonable range (dividing by sigma) and such that positive weights move it up and negative down (centering).
- Small effect: When done over mini-batches, adds regularization due to differences between batches.

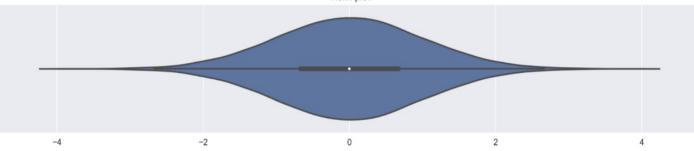
Useful Plots: For distributions



Boxplot



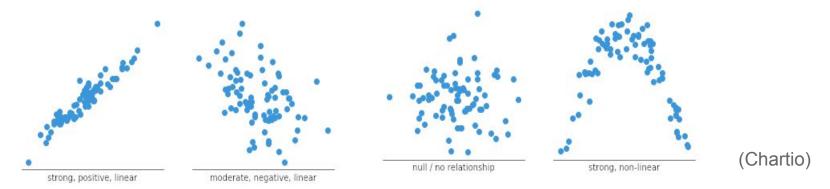
Violin plot



(Lewinson, 2019)

Useful Plots: Correlation

Scatter Plot: for two variables expected to be associated (with optional regression line)

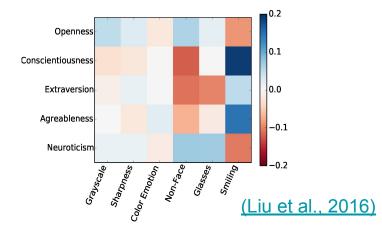


Correlation Matrix: for comparing associations between many variables (use Bonferroni correction if hyp testing)

	FriendSize	Intelligence Quotient	Income	Sat W/ Life	Depression
F1	0.03	0.04	0.12	0.02	-0.1
F2	0.04	-0.26	-0.19	-0.09	0.11
F3	-0.07	-0.13	0.02	-0.02	-0.02
F4	-0.03	0.27	-0.08	-0.12	0.11
F5	-0.01	0.23	0.29	0.07	-0.21

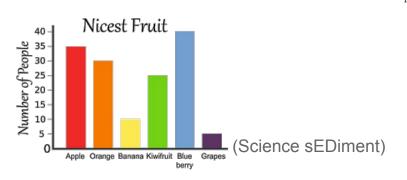
Fig 3. Individual factor correlations with outcomes. Note how F4 which captures the use of swear words negatively correlates with Satisfaction with Life (SWL).

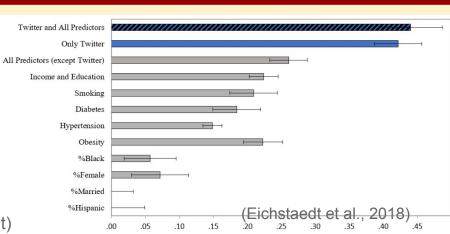
https://doi.org/10.1371/journal.pone.0201703.g003



Useful Plots: Any Values

Bar Plot: To visually compare values under different selections/conditions.

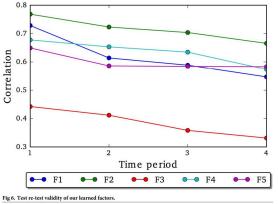




Pearson r

Line Plot: When one variable has a natural ordering (e.g. time)





https://doi.org/10.1371/journal.pone.0201703.g006

The Transformer: NN Sequence Modeling

-- assigning a probability to a sequences of words.

The Transformer: NN Sequence Modeling

-- assigning a probability to a sequences of elements.

Common Formulation: Model $P(e_n | e_1, e_2, ..., e_{n-1})$:the probability of a next element given history

-- assigning a probability to a sequences of words.

Common Formulation: Model $P(w_n | w_1, w_2, ..., w_{n-1})$:the probability of a next word given history

-- assigning a probability to a sequences of words.

Common Formulation: Model $P(w_n | w_1, w_2, ..., w_{n-1})$:the probability of a next word given history

Task Formulation:

Input: the previous words, $w_1, w_2, ..., w_{n-1}$ **Output:** a probability for the next word, w_n

$$P(w_4 | w_1 = 'Im', w_2 = 'feeling', w_3 = 'very') = ??$$

-- assigning a probability to a sequences of words.

Common Formulation: Model $P(w_n | w_1, w_2, ..., w_{n-1})$:the probability of a next word given history

Task Formulation:

Input: the previous words, $w_1, w_2, ..., w_{n-1}$ **Output:** a probability for the next word, w_n

$$P(w_4 = 'rhapsodic' \mid w_1 = 'Im', w_2 = 'feeling', w_3 = 'very') = ??$$

-- assigning a probability to a sequences of words.

Common Formulation: Model $P(w_n | w_1, w_2, ..., w_{n-1})$:the probability of a next word given history

Task Formulation:

Input: the previous words, $w_1, w_2, ..., w_{n-1}$ **Output:** a probability for the next word, w_n

$$P(w_4 = 'rhapsodic' \mid w_1 = 'Im', w_2 = 'feeling', w_3 = 'very') = 0.0012$$

-- assigning a probability to a sequences of words.

Common Formulation: Model $P(w_n | w_1, w_2, ..., w_{n-1})$:the probability of a next word given history

Task Formulation:

Input: the previous words, $w_1, w_2, ..., w_{n-1}$ **Output:** a probability for the next word, w_n "maximum likelihood estimate" Simple way to estimate, but mostly only works ok for short phrases.

P('good' | 'Im', 'feeling', 'very') = $\frac{count('Im feeling very good')}{count('Im feeling very *')}$

-- assigning a probability to a sequences of words.

Common Formulation: Model $P(w_n | w_1, w_2, ..., w_{n-1})$:the probability of a next word given history

Task Formulation:

Input: the previous words, $w_1, w_2, ..., w_{n-1}$ **Output:** a probability for the next word, w_n (i.e. a "probability distribution")

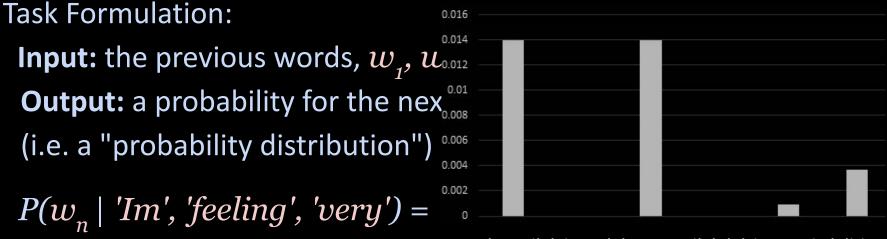
 $P(w_n | 'Im', 'feeling', 'very') =$

'good' 'clever' 'stressed' 'a' 'rhapsodic' 'blue'

Language Modeling

-- assigning a probability to a sequences of words.

Common Formulation: Model $P(w_n | w_1, w_2, ..., w_{n-1})$:the probability of a next word given history



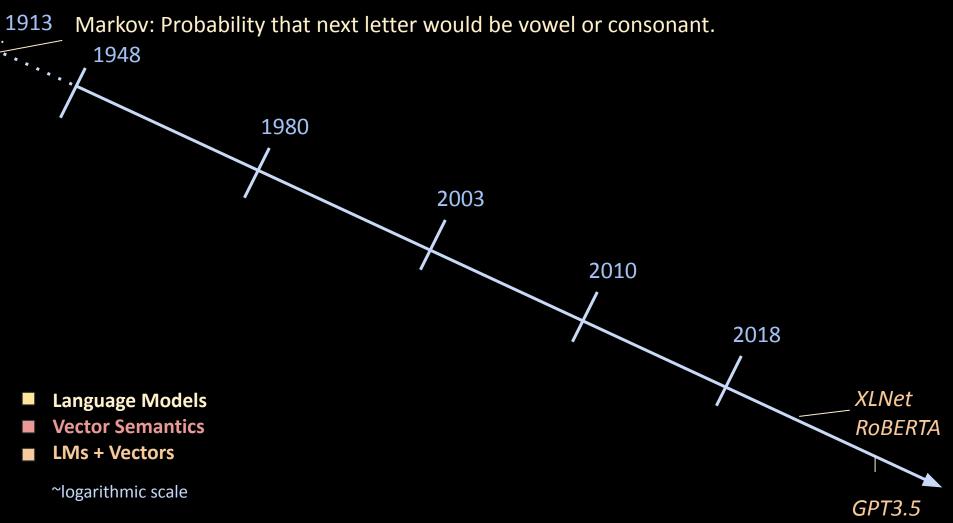
'good' 'clever' 'stressed' 'a' 'rhapsodic' 'blue'

Language Modeling

Applications:

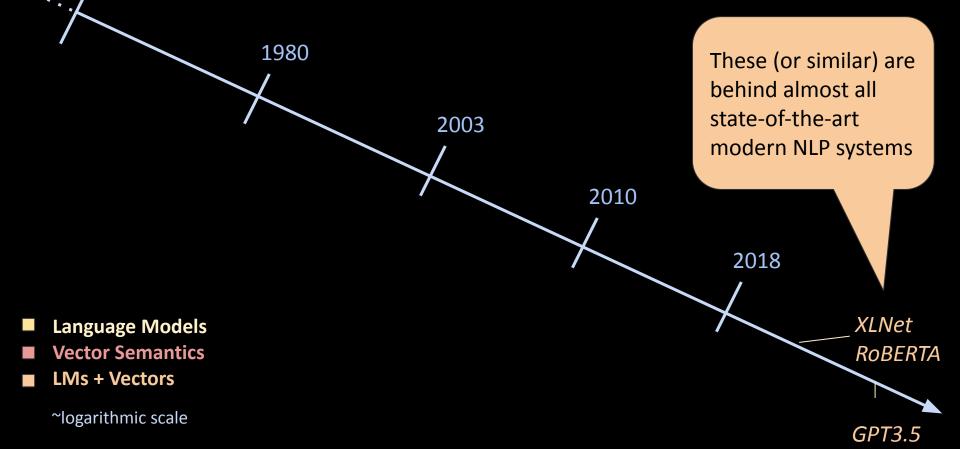
- Auto-complete: What word is next?
- Machine Translation: Which translation is most likely?
- Spell Correction: Which word is most likely given error?
- Speech Recognition: What did they just say?
 "eyes aw of an"
 (eyample from Jurafely, 2017)

(example from Jurafsky, 2017)



1913 Markov: Probability that next letter would be vowel or consonant.

1948



2003

1913 Markov: Probability that next letter would be vowel or consonant.

1948 Shannon: A Mathematical Theory of Communication (first digital language model)

Jelinek et al. (IBM): Language Models for Speech Recognition

Brown et al.: Class-based ngram models of

natural language

neural networks...

Osgood: The Measurement of Meaning

> Switzer: Vector Space Models Dee Ind Sen

Language ModelsVector Semantics

LMs + Vectors

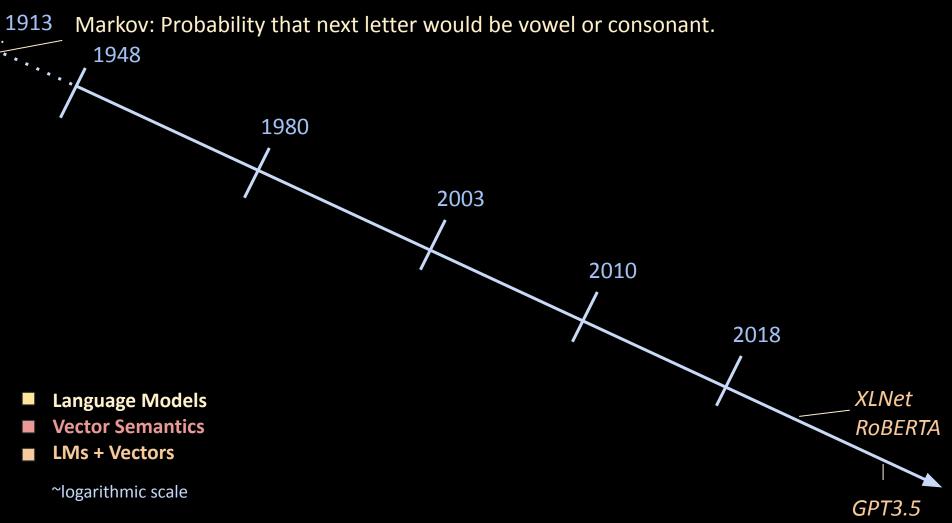
~logarithmic scale

Deerwater: Indexing by Latent Semantic Analysis (LSA)

1980

Bengio: Neural-net based embeddings Blei et al.: [LDA Topic Modeling] 2010 Mikolov: word2vec ELMO 2018 Collobert and Weston: A unified architecture for natural language BERT processing: Deep

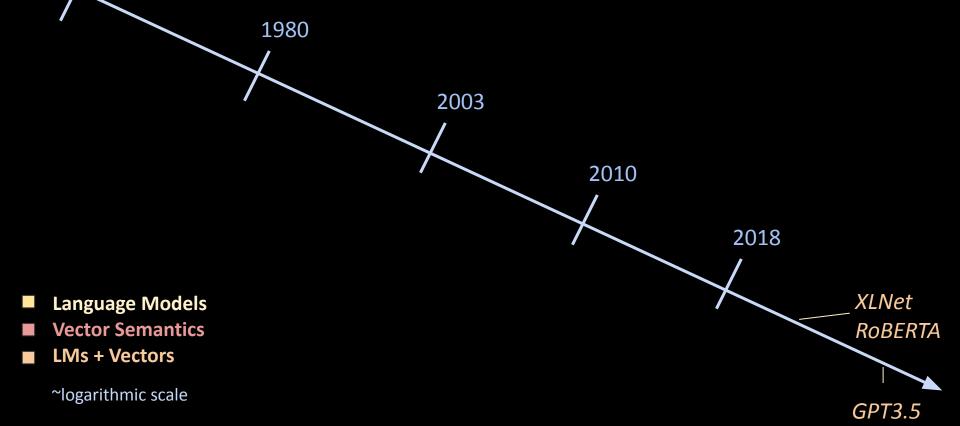
GPT3.5



1913 Markov: Probability that next letter would be vowel or consonant.

1948

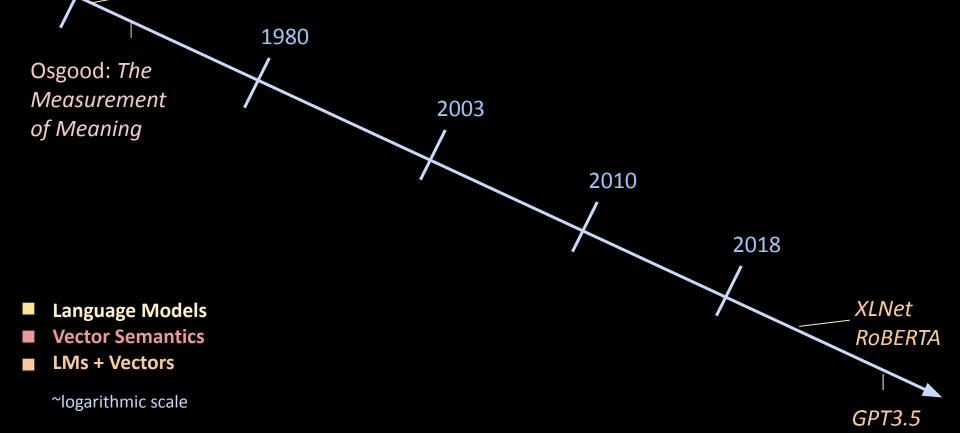
Shannon: A Mathematical Theory of Communication (first digital language model)



1913 Markov: Probability that next letter would be vowel or consonant.

1948

_ Shannon: A Mathematical Theory of Communication (first digital language model)



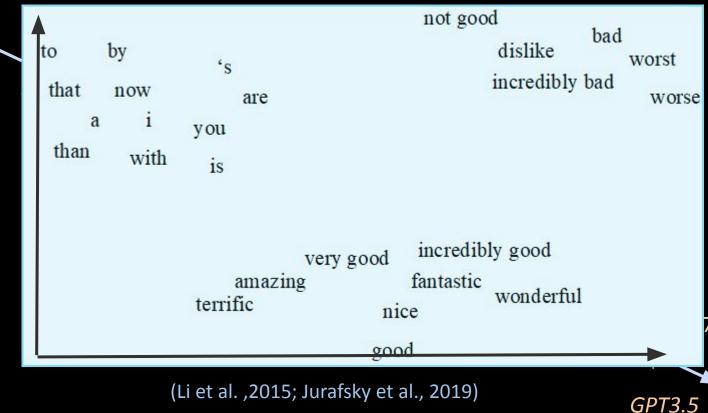
1913 Markov: Probability that next letter would be vowel or consonant.

_Shannon: A Mathematical Theory of Communication (first digital language model)

Osgood: The Measurement of Meaning

1948

Language Models
Vector Semantics
LMs + Vectors

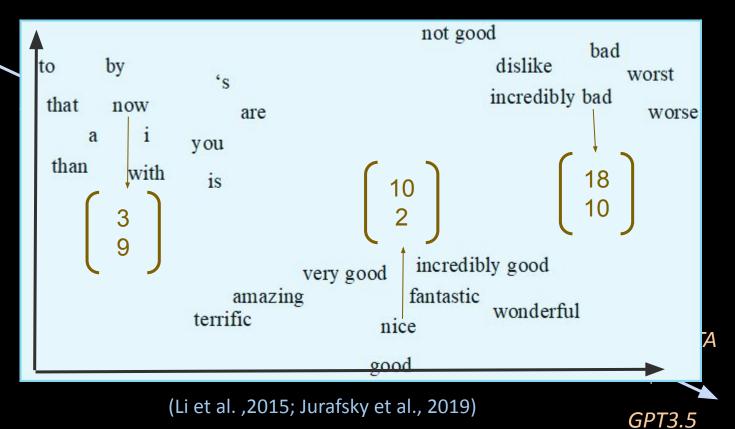


1913 Markov: Probability that next letter would be vowel or consonant.

_Shannon: A Mathematical Theory of Communication (first digital language model)

Osgood: The Measurement of Meaning

1948



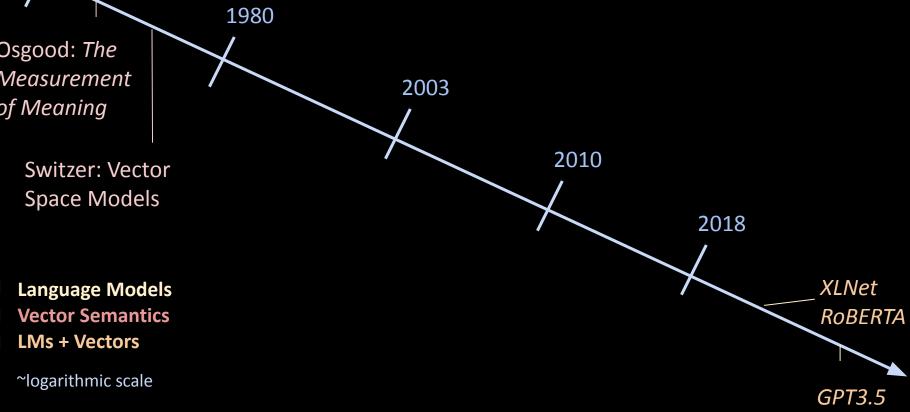
1913 Markov: Probability that next letter would be vowel or consonant.

Shannon: A Mathematical Theory of Communication (first digital language model)

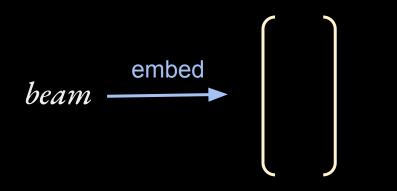
Osgood: *The* Measurement of Meaning

1948

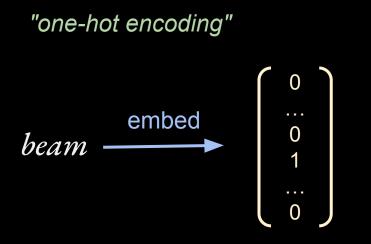
Language Models



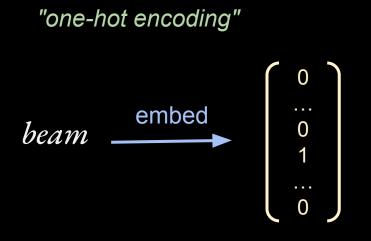
To embed: convert a token (or sequence) to a vector that **represents meaning**.



To embed: convert a token (or sequence) to a vector that **represents meaning**.

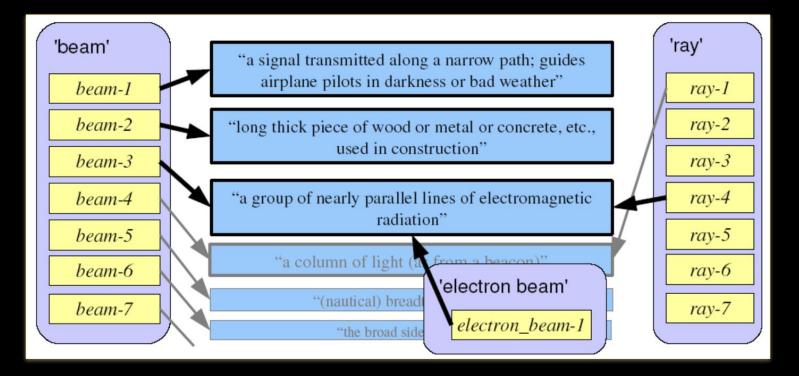


To embed: convert a token (or sequence) to a vector that **represents meaning**.



Prefer dense vectors; why?

- Less parameters (weights) for machine learning model.
- May generalize better implicitly.
- May capture synonyms



The nail hit the beam behind the wall.

To embed: convert a token (or sequence) to a vector that represents meaning.

Wittgenstein, 1945: "The meaning of a word is its use in the language"

Distributional hypothesis -- A word's meaning is defined by all the different contexts it appears in (i.e. how it is "distributed" in natural language).

Firth, 1957: "You shall know a word by the company it keeps"

The nail hit the beam behind the wall.

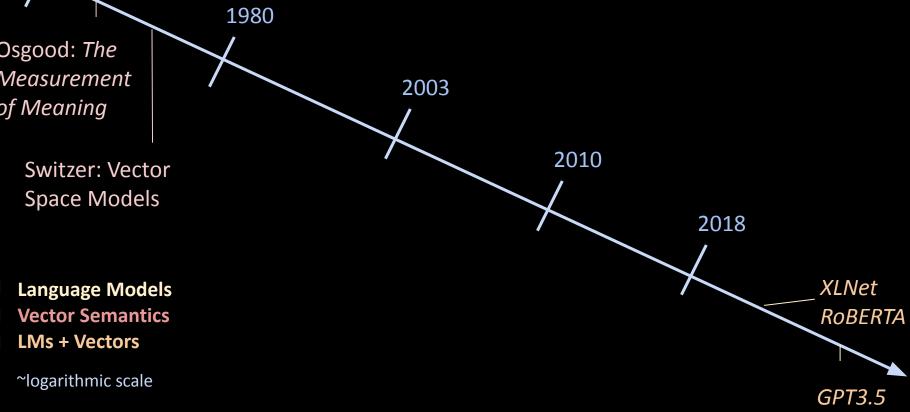
1913 Markov: Probability that next letter would be vowel or consonant.

Shannon: A Mathematical Theory of Communication (first digital language model)

Osgood: *The* Measurement of Meaning

1948

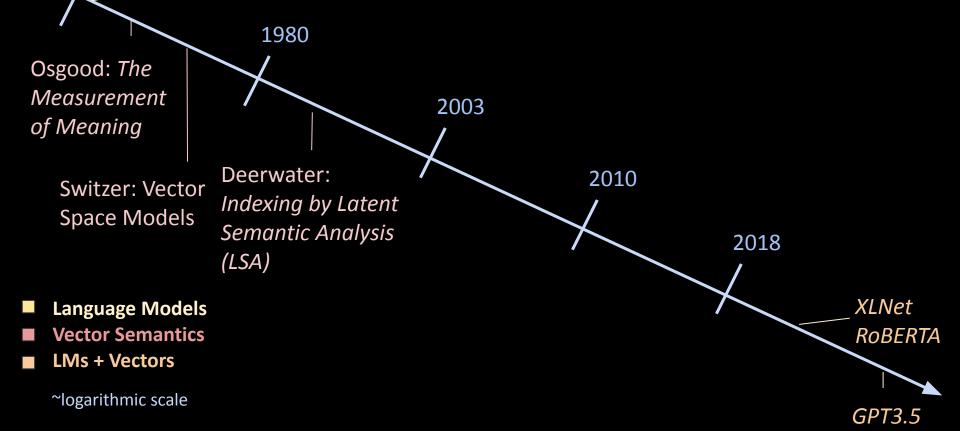
Language Models



1913 Markov: Probability that next letter would be vowel or consonant.

1948

Shannon: A Mathematical Theory of Communication (first digital language model)



Person A

How are you?

I feel *fine* –even *great*!

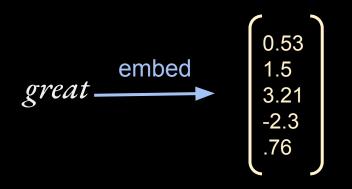
Person B

My life is a *great* mess! I'm having a very hard time being happy.

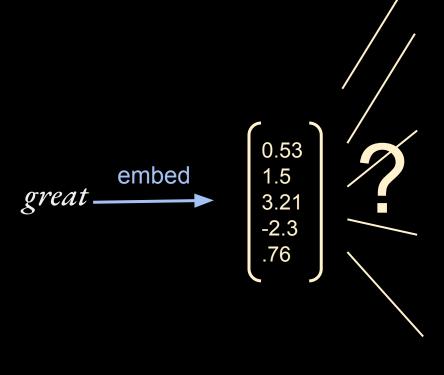
What is going on? Earlier, I played the game Yahtzee with my partner. I could not get that die to roll a 1! Now I'm lying on my bed for a rest.

My business *partner* was *lying* to me. He was trying to *game* the system and *played* me. I think I am going to *die* –he left and now I have to pay the *rest* of his *fine*.

Objective



Objective



great.a.1 (relatively large in size or number or extent; larger than others of its kind) great.a.2, outstanding (of major significance or importance)

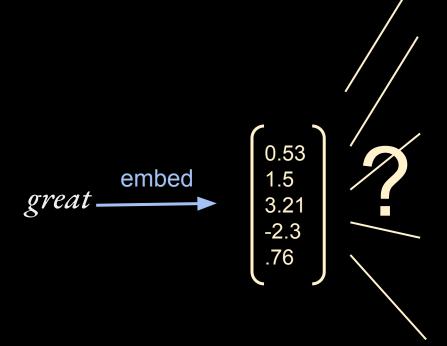
great.a.3 (remarkable or out of the ordinary in degree or magnitude or effect)

bang-up, bully, corking, cracking, dandy, great.a.4, groovy, keen, neat, nifty, not bad, peachy, slap-up, swell, smashing, old (very good)

capital, great.a.5, majuscule (uppercase)

big, enceinte, expectant, gravid, **great.a.6**, large, heavy, with child (in an advanced stage of pregnancy)

Objective



great.a.1 (relatively large in size or number or extent; larger than others of its kind) great.a.2, outstanding (of major significance or importance)

great.a.3 (remarkable or out of the ordinary in degree or magnitude or effect)

bang-up, bully, corking, cracking, dandy, great.a.4, groovy, keen, neat, nifty, not bad, peachy, slap-up, swell, smashing, old (very good)

capital, great.a.5, majuscule (uppercase)

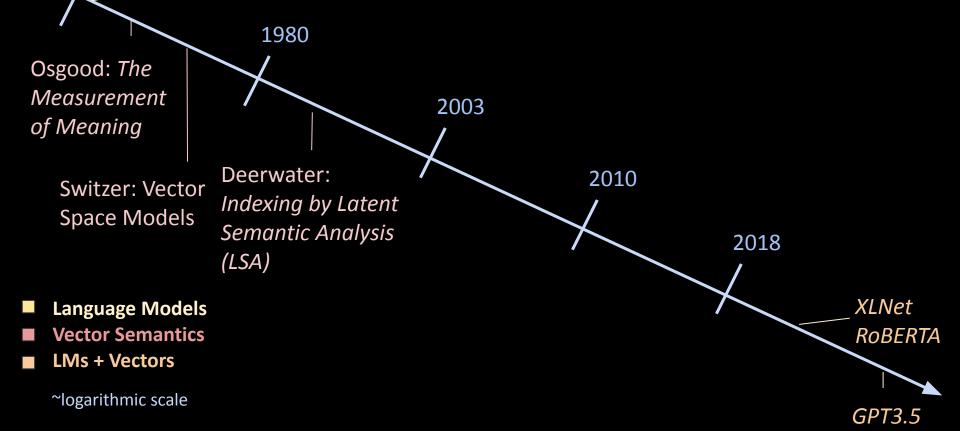
big, enceinte, expectant, gravid, **great.a.6**, large, heavy, with child (in an advanced stage of pregnancy)

great.n.1 (a person who has achieved distinction and honor in some field)

1913 Markov: Probability that next letter would be vowel or consonant.

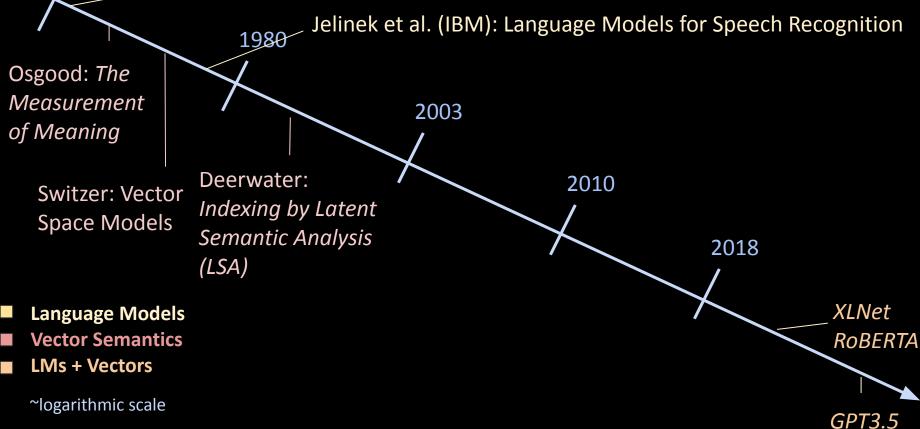
1948

Shannon: A Mathematical Theory of Communication (first digital language model)



1913 Markov: Probability that next letter would be vowel or consonant.

1948 Shannon: A Mathematical Theory of Communication (first digital language model)



Markov: Probability that next letter would be vowel or consonant. 1913

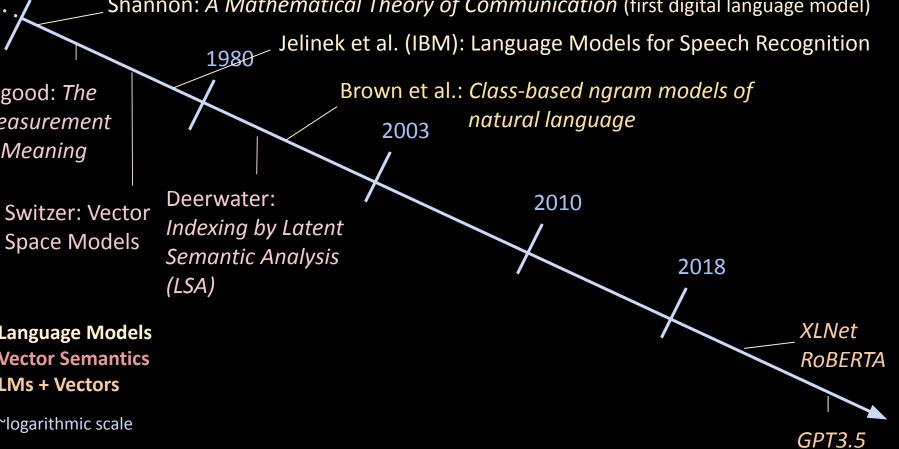
> 1948 Shannon: A Mathematical Theory of Communication (first digital language model)

Osgood: *The* Measurement of Meaning

Language Models

Vector Semantics

LMs + Vectors



Markov: Probability that next letter would be vowel or consonant. 1913

> 1948 Shannon: A Mathematical Theory of Communication (first digital language model)

> > Jelinek et al. (IBM): Language Models for Speech Recognition

GPT3.5

Osgood: *The* Measurement of Meaning

1980 Brown et al.: Class-based ngram models of natural language 2003 http://www.cs.cmu.edu/~ark/TweetNLP/cluster_viewer.html **Deerwater:** 2010 Switzer: Vector Indexing by Latent Space Models Semantic Analysis 2018 (LSA) XLNet Language Models **Vector Semantics** Roberta

LMs + Vectors

Markov: Probability that next letter would be vowel or consonant. 1913

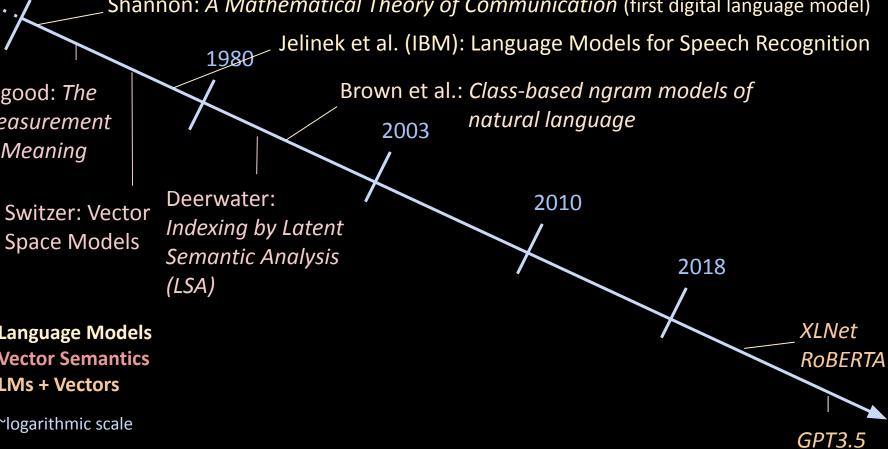
> 1948 Shannon: A Mathematical Theory of Communication (first digital language model)

Osgood: *The* Measurement of Meaning

Language Models

Vector Semantics

LMs + Vectors



Markov: Probability that next letter would be vowel or consonant. 1913

1980

1948 Shannon: A Mathematical Theory of Communication (first digital language model)

Jelinek et al. (IBM): Language Models for Speech Recognition

XLNet

GPT3

Roberta

Osgood: *The* Measurement of Meaning

Brown et al.: Class-based ngram models of natural language 2003 Blei et al.: [LDA Topic Modeling] **Deerwater:** 2010 Switzer: Vector Indexing by Latent Space Models Semantic Analysis 2018 (LSA)

Language Models

Vector Semantics

LMs + Vectors

1913 Markov: Probability that next letter would be vowel or consonant.

1948 Shannon: A Mathematical Theory of Communication (first digital language model)

Osgood: The Measurement of Meaning

> Switzer: Vector Space Models

Deerwater: Indexing by Latent Semantic Analysis (LSA) Bei Ne

1980

Bengio: Neural-net based embeddings

Brown et al.: *Class-based ngram models of* 2003 *natural language*

Jelinek et al. (IBM): Language Models for Speech Recognition

Blei et al.: [LDA Topic Modeling]

2010

2018

XLNet

GPT3.5

Roberta

Language Models Vector Semantics

LMs + Vectors

1913 Markov: Probability that next letter would be vowel or consonant.

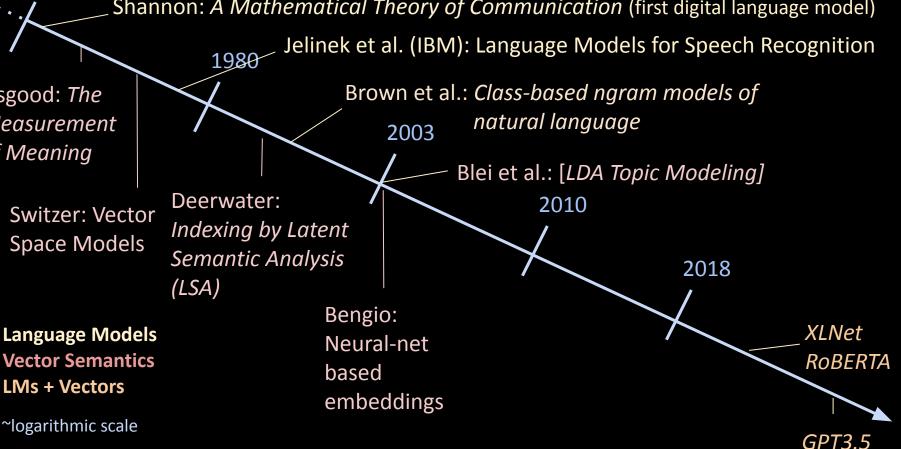
> 1948 Shannon: A Mathematical Theory of Communication (first digital language model)

Osgood: *The* Measurement of Meaning

> Switzer: Vector Space Models

Vector Semantics

LMs + Vectors



1913 Markov: Probability that next letter would be vowel or consonant.

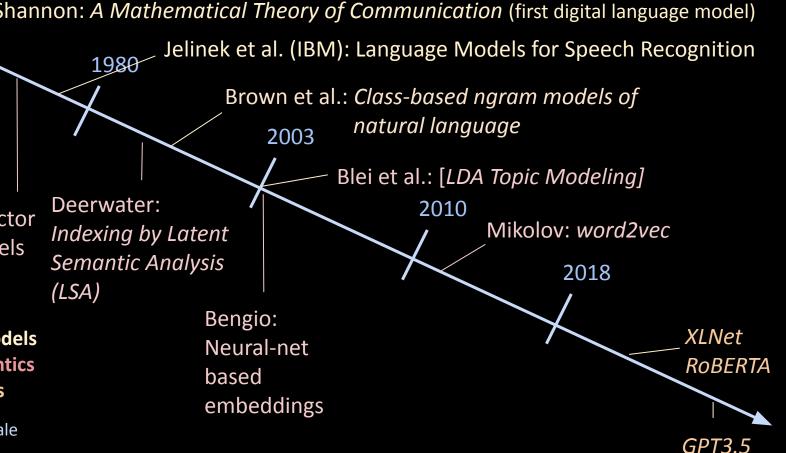
> 1948 Shannon: A Mathematical Theory of Communication (first digital language model)

Osgood: *The* Measurement of Meaning

> Switzer: Vector Space Models

Language Models **Vector Semantics**

LMs + Vectors



1913 Markov: Probability that next letter would be vowel or consonant.

> 1948 Shannon: A Mathematical Theory of Communication (first digital language model)

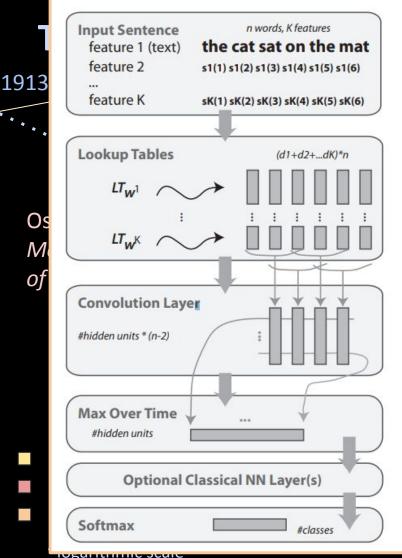
Osgood: *The* Measurement of Meaning

> Switzer: Vector Space Models

Language Models **Vector Semantics**

LMs + Vectors

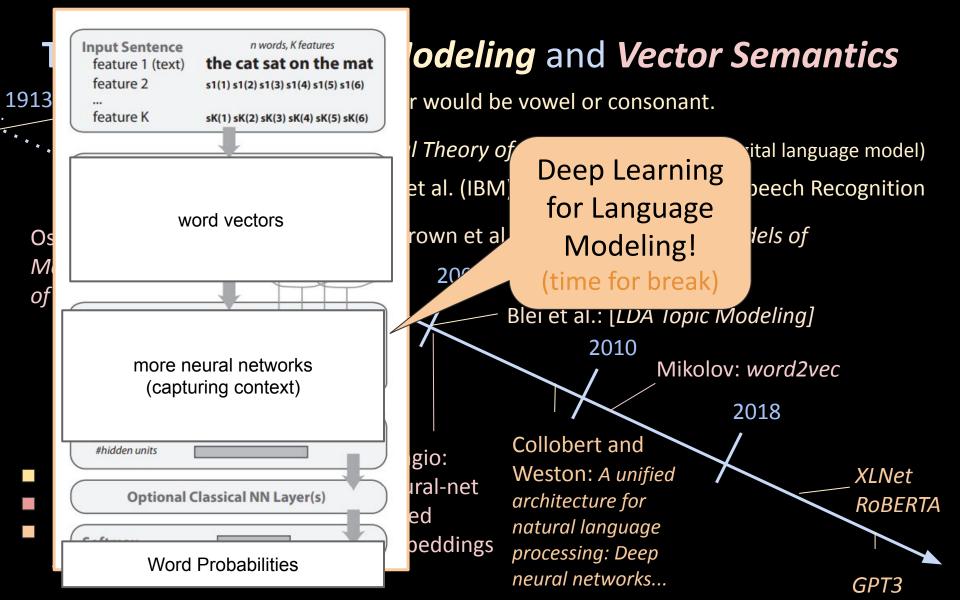




odeling and Vector Semantics

r would be vowel or consonant.

I Theory of Communication (first digital language model) et al. (IBM): Language Models for Speech Recognition rown et al.: Class-based ngram models of natural language 2003 Blei et al.: [LDA Topic Modeling] 2010 Mikolov: *word2vec* 2018 **Collobert** and gio: Weston: A unified XLNet iral-net architecture for Roberta ed natural language beddings processing: Deep neural networks... GPT3



1913 Markov: Probability that next letter would be vowel or consonant.

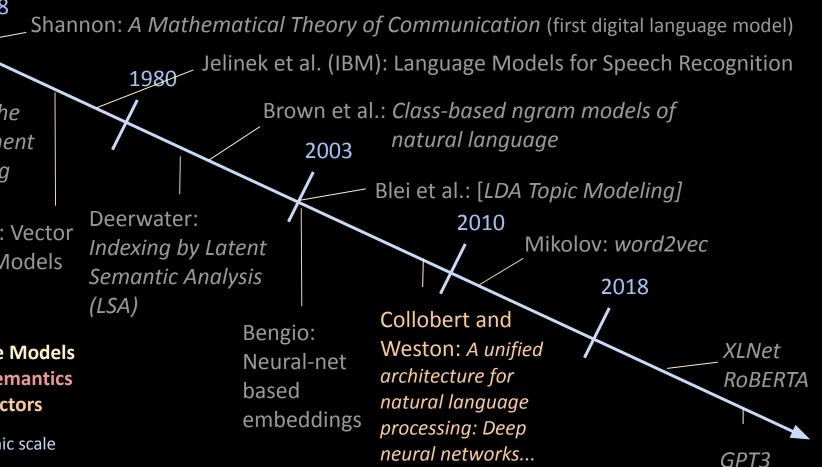
> 1948 Shannon: A Mathematical Theory of Communication (first digital language model)

Osgood: *The* Measurement of Meaning

> Switzer: Vector Space Models

Language Models **Vector Semantics**

LMs + Vectors



2003

1913 Markov: Probability that next letter would be vowel or consonant.

1948 Shannon: A Mathematical Theory of Communication (first digital language model)

Osgood: The Measurement of Meaning

> Switzer: Vector Space Models

Deerwater: Indexing by Latent Semantic Analysis (LSA)

1980

Language ModelsVector Semantics

LMs + Vectors

~logarithmic scale

Bengio: Neural-net based embeddings Blei et al.: [LDA Topic Modeling] 2010 Mikolov: word2vec ELMO 2018 Collobert and Weston: A unified architecture for natural language processing: Deep neural networks...

Jelinek et al. (IBM): Language Models for Speech Recognition

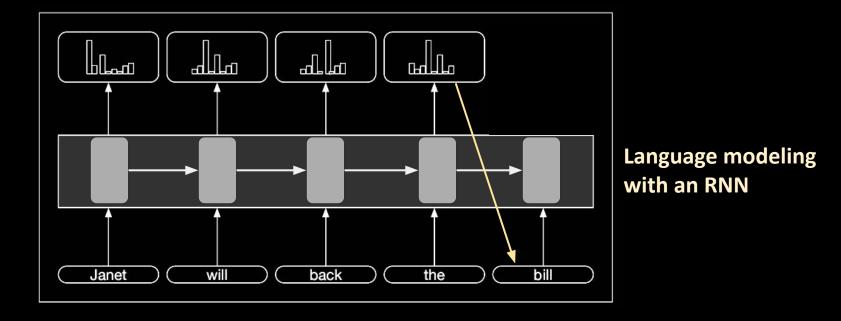
Brown et al.: Class-based ngram models of

natural language

XLNet RoBERTA

GPT3

Recurrent Neural Network



Timeline: Language Modeling and Vector Semantics

2003

1913 Markov: Probability that next letter would be vowel or consonant.

1948 Shannon: A Mathematical Theory of Communication (first digital language model)

Osgood: The Measurement of Meaning

> Switzer: Vector Space Models

Deerwater: Indexing by Latent Semantic Analysis (LSA)

1980

Language ModelsVector Semantics

LMs + Vectors

~logarithmic scale

Bengio: Neural-net based embeddings Blei et al.: [LDA Topic Modeling] 2010 Mikolov: word2vec ELMO 2018 Collobert and Weston: A unified architecture for natural language processing: Deep neural networks...

Jelinek et al. (IBM): Language Models for Speech Recognition

Brown et al.: Class-based ngram models of

natural language

XLNet RoBERTA

GPT3

Timeline: Language Modeling and Vector Semantics

1913 Markov: Probability that next letter would be vowel or consonant.

Shannon: A Mathematical Theory of Communication (first digital language model)

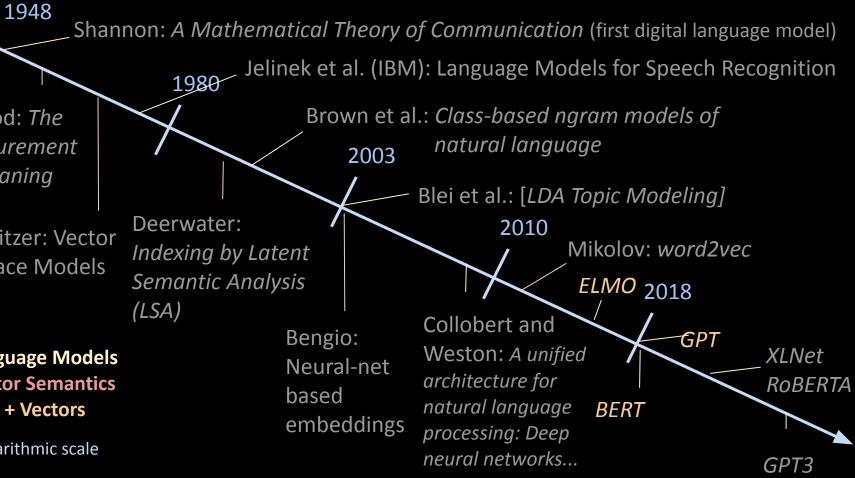
Osgood: *The* Measurement of Meaning

> Switzer: Vector Space Models

Language Models **Vector Semantics**

LMs + Vectors

~logarithmic scale



The Transformer: Motivation

Challenges to sequential representation learning

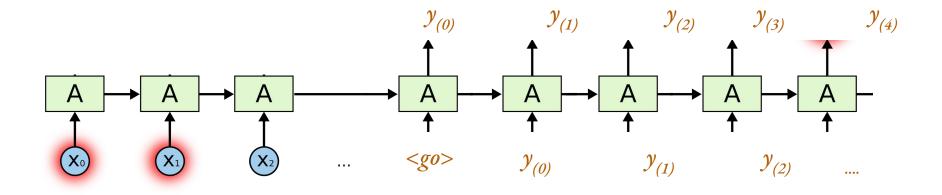
- Capture long-distance dependencies
- Preserving sequential distances / periodicity
- Capture multiple relationships
- Easy to parallelize -- don't need sequential processing.

The Transformer: Attention-only Models

Challenge:

The ball was kicked by kayla.

• Long distance dependency when translating:



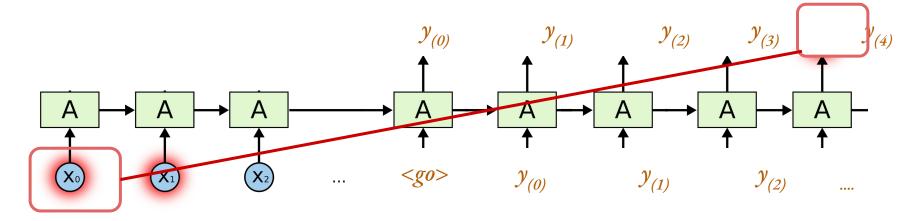
Kayla kicked the ball.

The Transformer: Attention-only Models

Challenge:

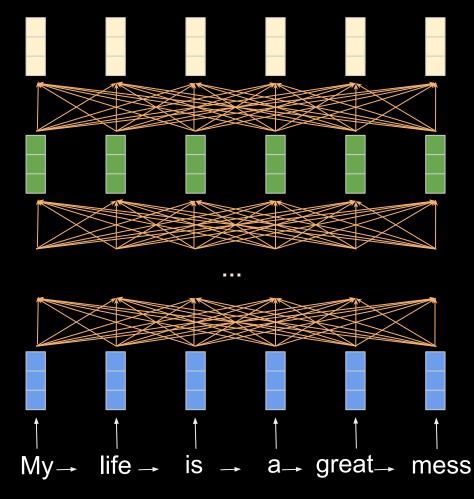
The ball was kicked by kayla.

• Long distance dependency when translating:



Kayla kicked the ball.

Transformer Language Models: Uses multiple layers of a transformer



layer k: (used for language modeling)

layer k-1: (taken as contextual embedding)

layers 1 to k-2: (compose embeddings with context)

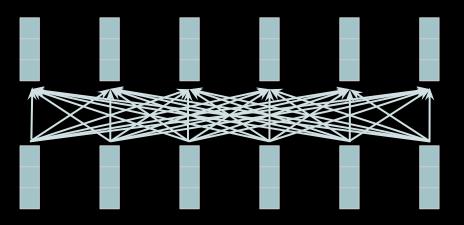
layer 0: (input: word-type embeddings)

sentence (sequence) input:

(Kjell, Kjell, and Schwartz, 2023)

<u>auto-encoder:</u>

- Connections go both directions.
- Task is predict word in middle: p(wi| ..., pwi-2, wi-1, wi+1, wi+2...)
- Better for:
 - \circ embeddings
 - fine-tuning (transfer learning)

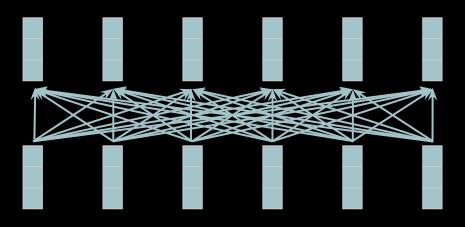


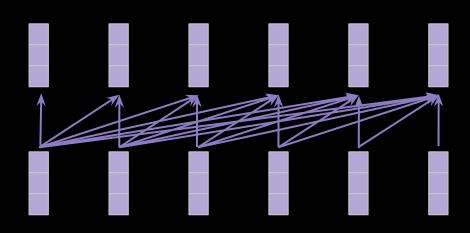
<u>auto-encoder:</u>

- Connections go both directions.
- Task is predict word in middle: p(wi| ..., pwi-2, wi-1, wi+1, wi+2...)
- Better for:
 - embeddings
 - fine-tuning (transfer learning)

auto-regressor (generator):

- Connections go forward only
- Task is predict word next word: p(wi| wi-1, wi-2, ...)
- Better for:
 - generating text
 - zero-shot learning



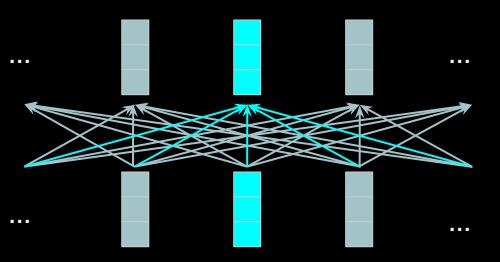


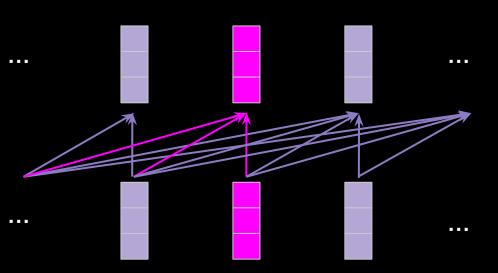
<u>auto-encoder:</u>

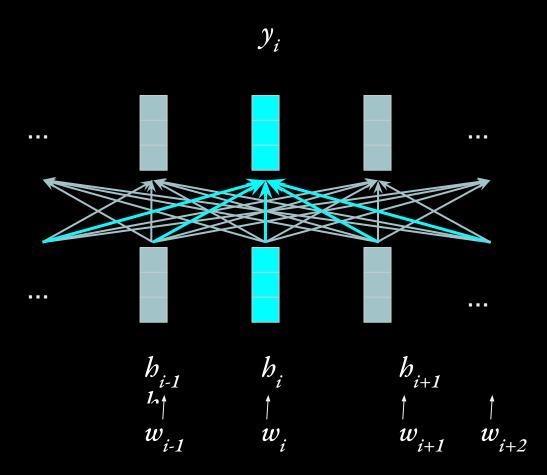
- Connections go both directions.
- Task is predict word in middle: p(wi| ..., pwi-2, wi-1, wi+1, wi+2...)
- Better for:
 - embeddings
 - fine-tuning (transfer learning)

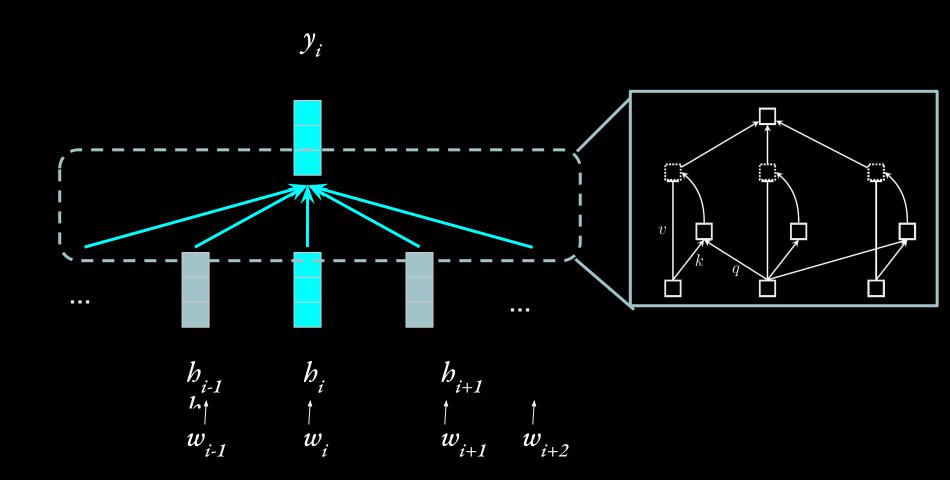
auto-regressor (generator):

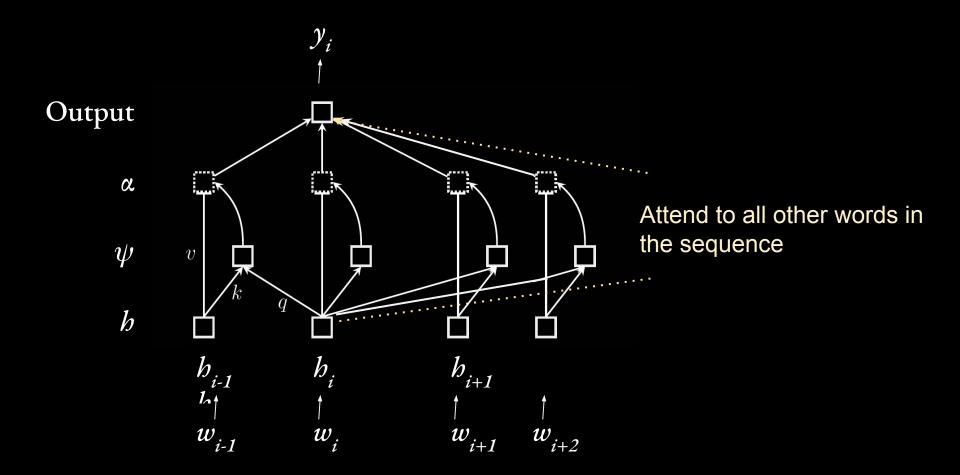
- Connections go forward only
- Task is predict word next word: p(wi| wi-1, wi-2, ...)
- Better for:
 - generating text
 - zero-shot learning

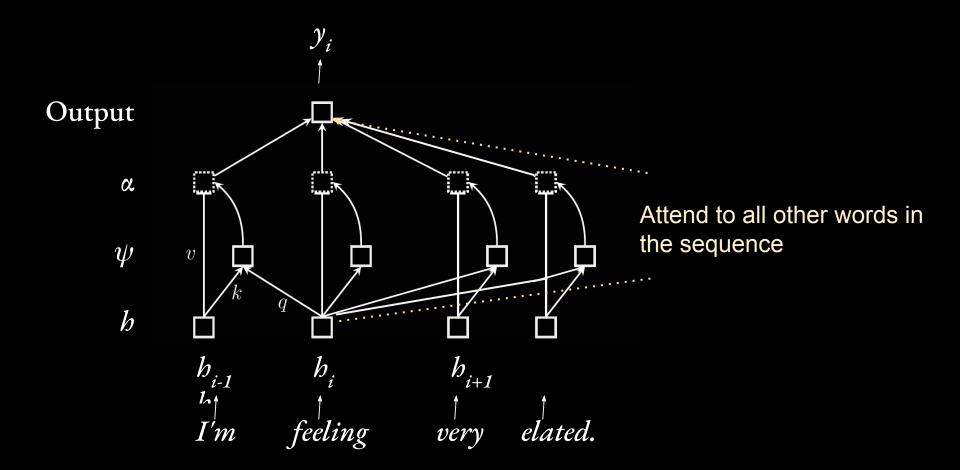


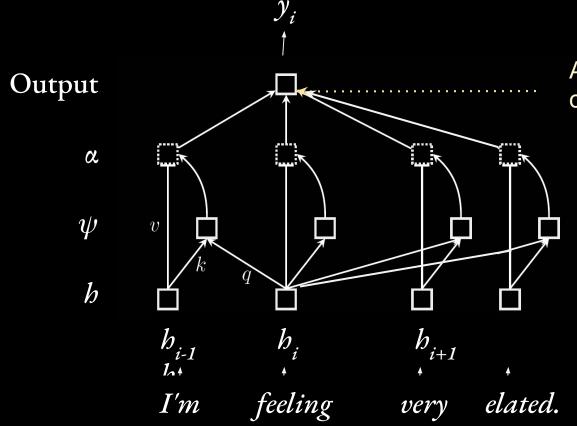




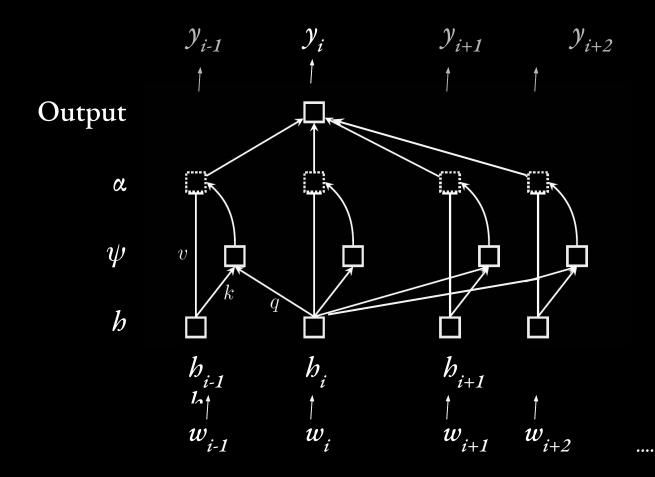


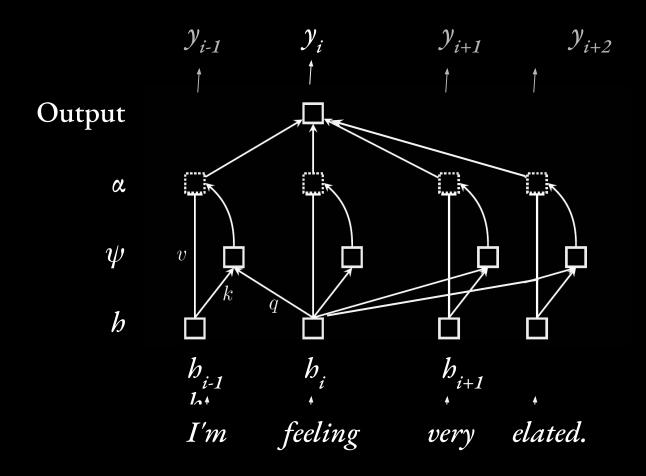


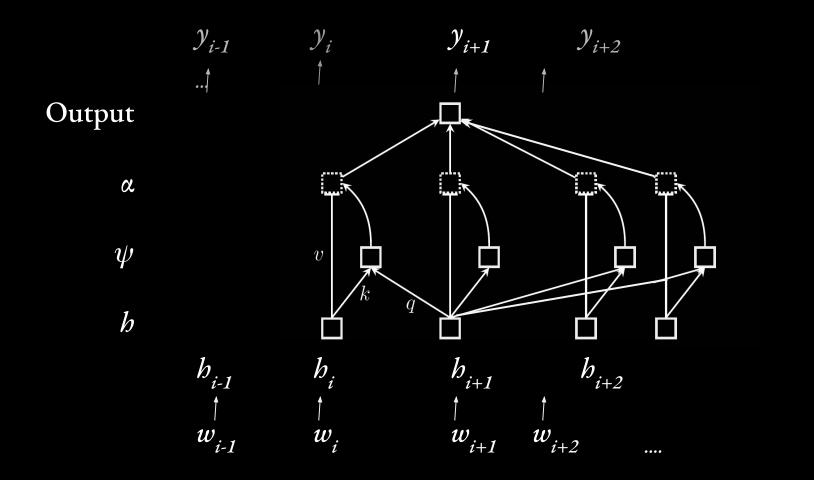


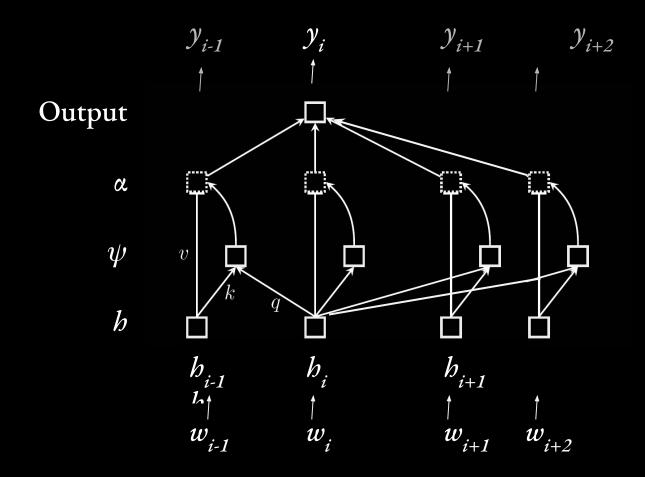


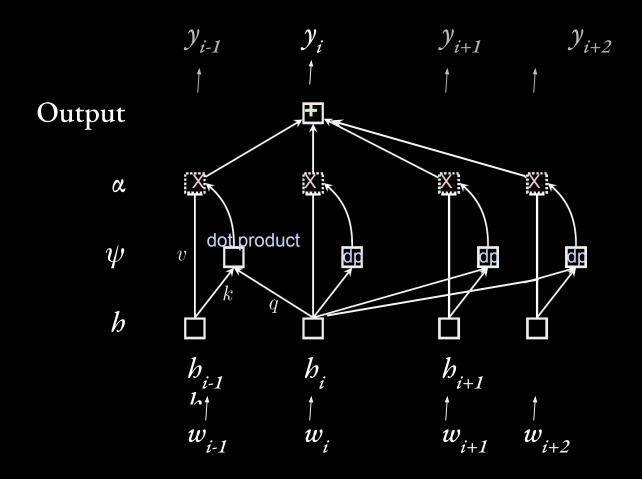
A weighted combination of other words' vectors.



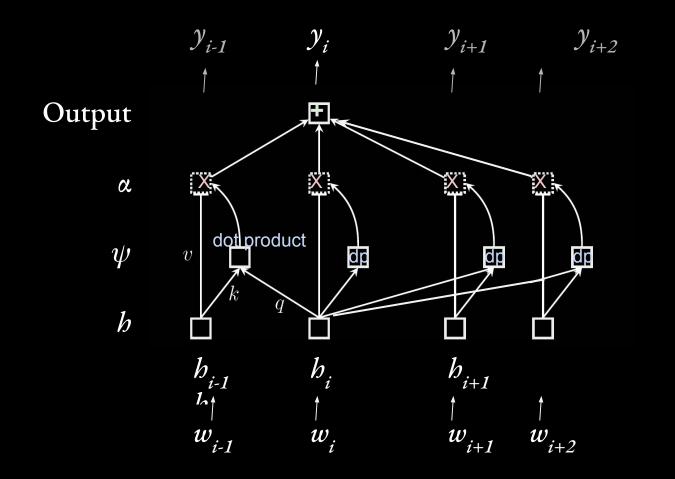






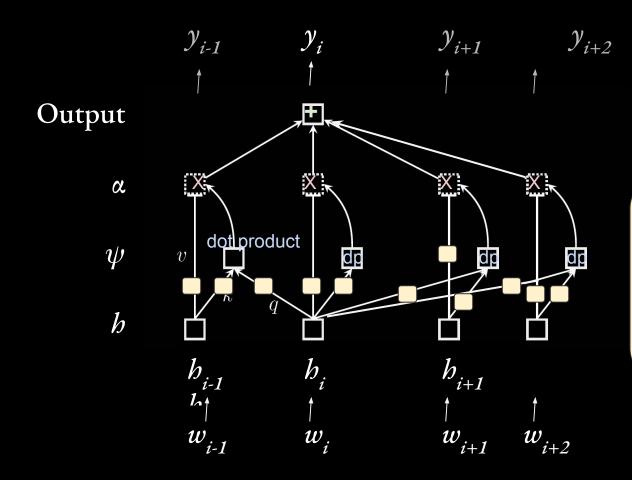


 $\psi_{dp}(h_i, s) = s^T h_i$ $k^t q$



scaling parameter

 $\psi_{dp}(k,q) = (k^t q) \sigma$



 $\psi_{dp}(k,q) = (k^t q) \sigma$

Linear layer: W^TX

One set of weights for each of for K, Q, and V

Self-Attention in PyTorch

```
import nn.functional as f
class SelfAttention(nn.Module):
    def __init__(self, h_dim:int):
        self.Q = nn.Linear(h_dim, h_dim) #1 head
        self.K = nn.Linear(h_dim, h_dim)
        self.V = nn.Linear(h_dim, h_dim)
```

```
\psi_{dp}(k,q) = (k^t q) \sigma
```

Linear layer: $W^T X$

One set of weights for each of for K, Q, and V

```
def forward(hidden_states:torch.Tensor):
    v = self.V(hidden_states)
    k = self.K(hidden_states)
    q = self.Q(hidden_states)
    attn_scores = torch.matmul(q, k.T)
    attn_probs = f.Softmax(attn_scores)
```

```
context = torch.matmul(attn_probs, v)
return context
```

Self-Attention in PyTorch

```
import nn.functional as f
class SelfAttention(nn.Module):
    def init (self, h dim:int):
        self.Q = nn.Linear(h dim, h dim) #1 head
        self.K = nn.Linear(h dim, h dim)
        self.V = nn.Linear(h dim, h dim)
        self.dropout = nn.dropout(p=0.1)
    def forward(hidden states:torch.Tensor):
        v = self.V(hidden states)
        k = self.K(hidden_states)
        q = self.Q(hidden_states)
        attn scores = torch.matmul(q, k.T)
        attn probs = f.Softmax(attn scores)
        attn probs = self.dropout(attn probs)
        context = torch.matmul(attn probs, v)
        return context
```

```
\psi_{dp}(k,q) = (k^t q) \sigma
```

Linear layer: $W^T X$

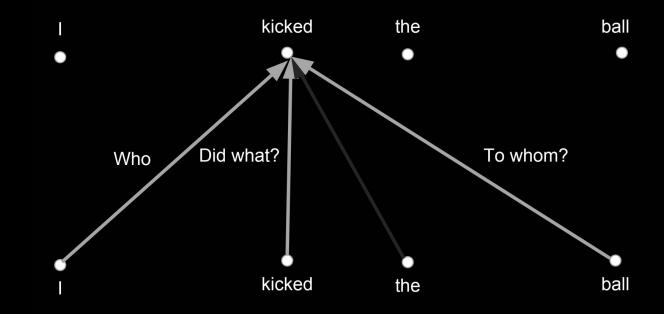
One set of weights for each of for K, Q, and V

Self-Attention in PyTorch



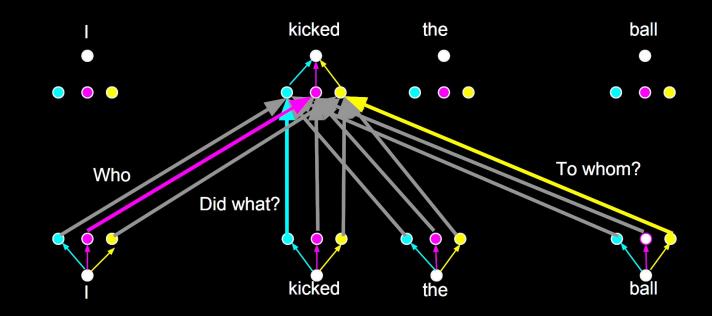
The Transformer: Beyond Self-Attention

Limitation (thus far): Can't capture multiple types of dependencies between words.

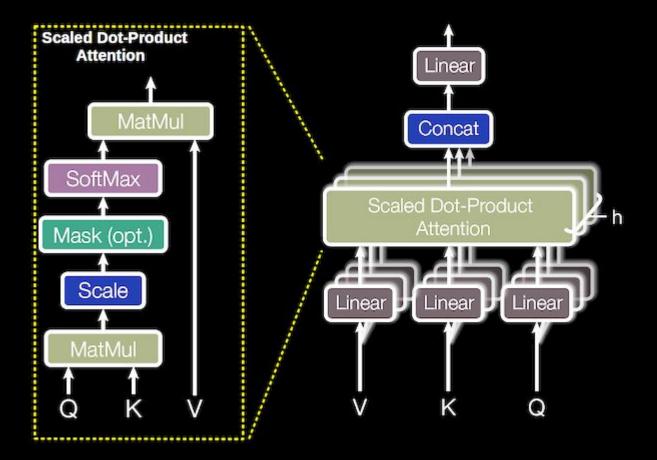


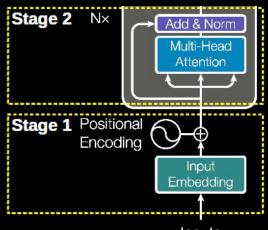
The Transformer: Beyond Self-Attention

Limitation (thus far): Can't capture multiple types of dependencies between words. Solution: Multi-head attention

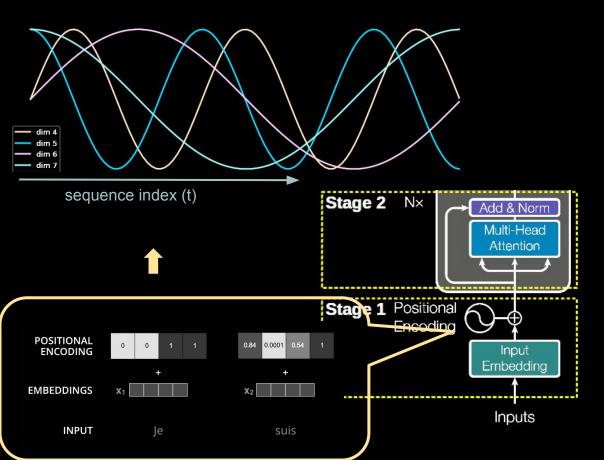


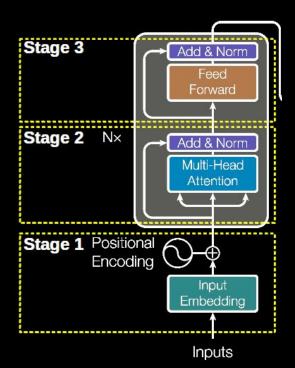
The Transformer: Muli-headed Attention

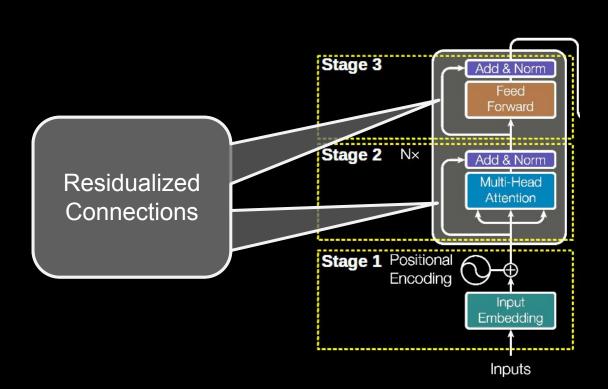


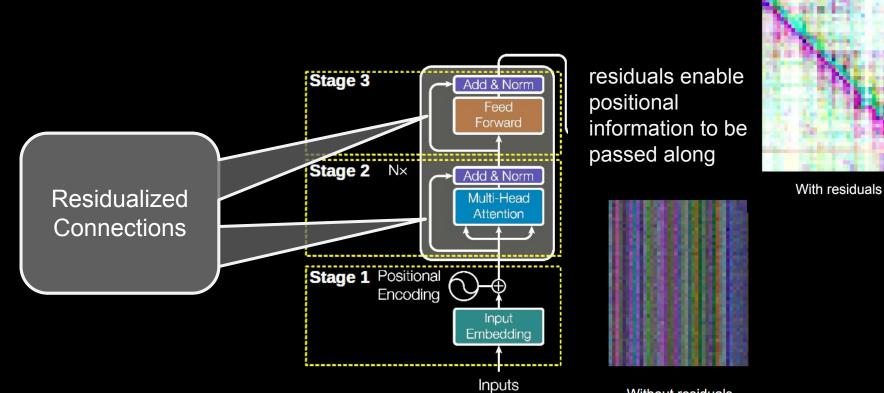


Inputs









Without residuals

The Transformer: Motivation

Challenges to sequential representation learning

- Capture long-distance dependencies
- Preserving sequential distances / periodicity
- Capture multiple relationships
- Easy to parallelize -- don't need sequential processing.

The Transformer: Motivation

Challenges to sequential representation learning

- Capture long-distance dependencies *Self-attention treats far away words similar to those close*.
- Preserving sequential distances / periodicity
 Positional embeddings encode distances/periods.
- Capture multiple relationships *Multi-headed attention enables multiple compositions*.
- Easy to parallelize -- don't need sequential processing. Entire layer can be computed at once. Is only matrix multiplications + standardizing.

Transformer (as of 2017)

"WMT-2014" Data Set. BLEU scores:

	EN-DE	EN-FR
GNMT (orig)	24.6	39.9
ConvSeq2Seq	25.2	40.5
Transformer*	28.4	41.8

Transformers as of 2023

General Language Understanding Evaluations:

https://gluebenchmark.com/leaderboard

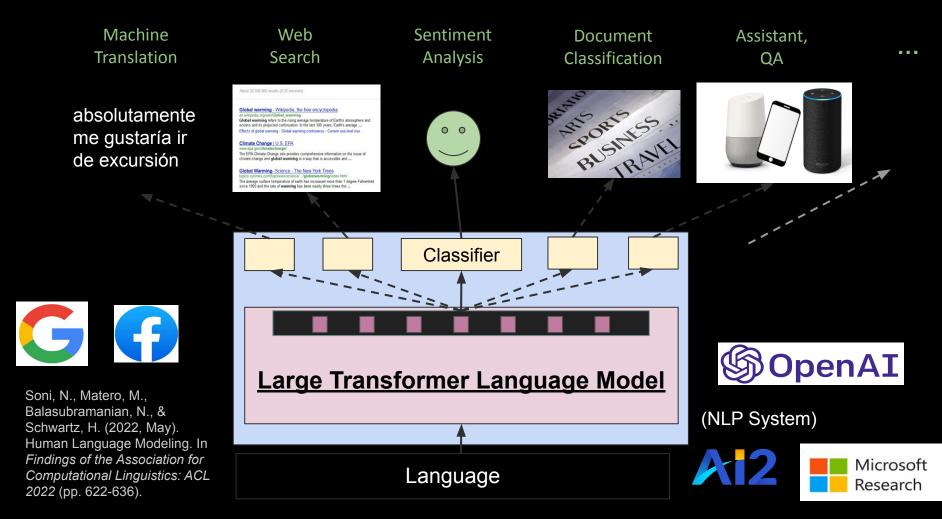
https://super.gluebenchmark.com/leaderboard/

ChatGPT

B

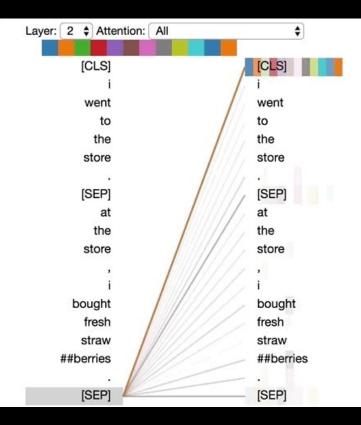
ChatGPT is an artificial intelligence chatbot developed by OpenAI and launched in November 2022. It is built on top of OpenAI's GPT-3.5 and GPT-4 families of large language models and has been fine-tu...

Transformers as of 2023



Bert: Attention by Layers

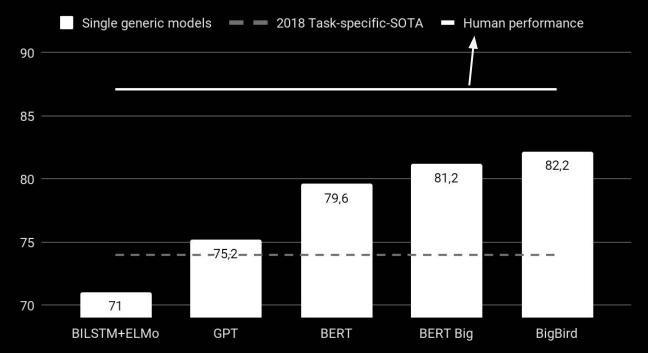
https://colab.research.google.com/drive/1vIOJ1IhdujVjfH857hvYKIdKPTD9Kid8



(Vig, 2019)

BERT Performance: e.g. Question Answering

GLUE scores evolution over 2018-2019

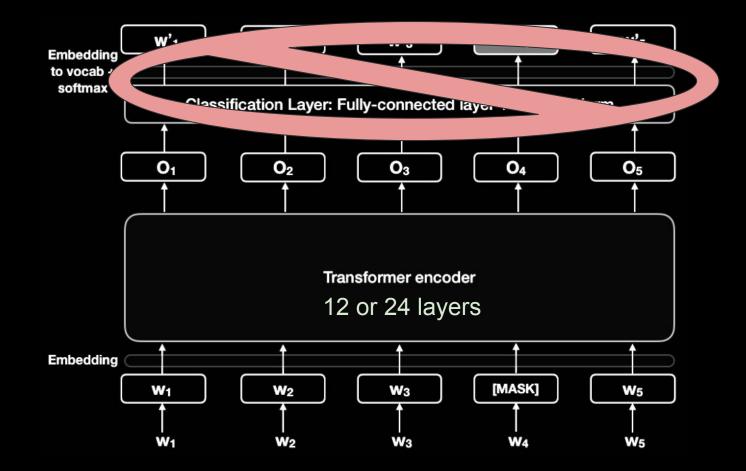


https://rajpurkar.github.io/SQuAD-explorer/

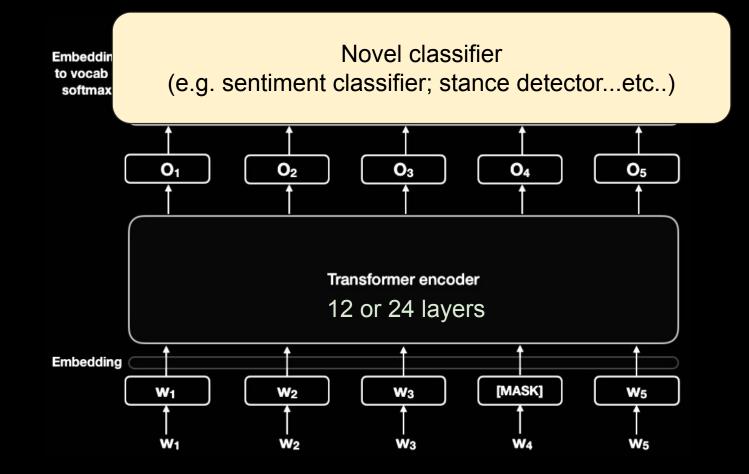
BERT: Pre-training; Fine-tuning



BERT: Pre-training; Fine-tuning



BERT: Pre-training; Fine-tuning



The Transformer: Motivation

Challenges to sequential representation learning

- Capture long-distance dependencies Self-attention treats far away words similar to those close.
- Preserving sequential distances / periodicity
 Positional embeddings encode distances/periods.
- Capture multiple relationships *Multi-headed attention enables multiple compositions*.
- Easy to parallelize -- don't need sequential processing. Entire layer can be computed at once. Is only matrix multiplications + standardizing.